China OEM Screw Type Air Diesel 7bar 70cfm 14.9kw CHINAMFG Compressor with Low Price Xas38kd wholesaler

Product Description

Screw Type Air Diesel 7bar 70cfm 14.9kw CHINAMFG Compressor with Low Price Xas38kd

1. Lightweight
11 models. Almost all are below 750 kg including options with a built in generator and aftercooler.

2. Legendary toughness
HardHat canopy for longer lifetime and higher residual value.

3. Assured reliability
Anti-air lock system for guaranteed engine starting.

4. PACE – 1 compressor, multiple applications
A boost for your utilization rate. Thanks to PACE, you can adjust the pressure and use your compressor for multiple applications.

5. Stage V compliant
All models comply with Europe’s most stringent emission regulations.

6. On-board generator
Our towable compressors are also available with built-in generator. That’s 1 piece of equipment less that you need to bring to your construction site.

Find the most suitable XAS for your application:
With or without built-in generator
With or without PACE technology (adjustable pressure)
Wide range of options (quality air treatment, extreme weather kits, and more)

Technical Data of 8 Series  Portable Air Compressor

Performance Unit XAS38Kd XAS 48 Kd XAHS38Kd XAS 58Kd XAS 68 Kd
Working Pressure Bar (g) 7 7 12 7 7
Psi (g) 100 100 175 100 100
Free Air Delivery CFM 70 90 80 120 135
M3 /Min 2 3 2 3 4
Noise dB(A) 70 70 70 70 70
Engine
Engine Brand   Kubota Kubota Kubota Kubota Kubota
Engine Model   D 722 D 902 V 1505 V 1505 V 1505
Number of Cylinders   3 3 4 4 4
Power output kw 14,9 18,5 26,5 26,5 26,5
Fuel Tank capacity L 27 27 60 60 60
Full load RPM rpm 3400 3600 3000 3000 3000
Dimensions : Box unit
Length mm 1550 1550 1940 1940 1940
Width mm 1050 1050 1160 1160 1160
Height mm 880 880 1050 1050 1050
Weight Box kg 440 440 650 650 650

 

Technical Data
Performance XAS 88KD XAS 98KD XAS 48KDG XAS 68KDG XAS 98KDG
Free air delivery m²/min 5   5.3 2.5 3.5 5.3
Working pressure   bar 7 7 7 10.3 7
Emission valve No/size  3*3/4″  3*3/4″ 3*3/4″ 3*3/4″ 3*3/4″
electric power kVA     6(12.5) 6(12.5) 9
air compressor oil tank L 8 9 8 8 9
Max.ambient temperature at sea level C 50 50 50 50 50
Min.starting temperature C -10/-20   -10/-20 -10/-20 -10/-20 -10/-20
Noise level     dB(A) 101   101 101 101 101
Engine    
Brand      Kubota   Kubota Kubota Kubota Kubota
Model       V 1505 T   V1505 T V 1505(T) V1505 T V 1505 T
Cylinder no.   4 4 4 4 4
Power    kW 33 33 26.5(33) 33 33
Full load   rpm  3000  3000 3000 3000 3000
unload   rpm  1850  1850 1850 1850 1850
engine oil tank capacity L 5.5   5.5 5.5 5.5 5.5
cooler tank capacity L 8.5   8.5 8.5 8.5 8.5
fuel tank capacity L 60 60 60 60 60
Dimension    
Length   mm  2290  2290 2290 2290 2290
Width   mm  1350  1350 1350 1350 1350
Height   mm  1400  1400 1400 1400 1400
Weight    kg  <750  <750 <750 <750 <750

More CHINAMFG air compressor:

XAS XAS37, XAS47, XAS57, XAS67, XAS97,XAS137, XAS58kd, XAS68kd, XAS78kd, XAS88, XAS88kd, XAS57E, XAS77E, XAS486E, XAS186C,
XAH XAH107,
XAHS XAHS37, XAHS38kd, XAHS710E, XAHS650E, XAHS376E, XAHS930E, XAHS950, XAHS166C, XAHS710cd,
XATS XATS67, XATS68kd, XATS1200, XATS1050, XATS156C, XATS800cd,
XAMS XAMS850E, XAMS800E, XAMS466E, XAMS1150, XAMS850cd,
XAVS XAVS650E, XAVS550E, XAVS306E, XAVS336E, XAVS900, XAVS206C, XAVS236C, XAVS650cd,
XAXS XAXS600E, XAXS600C, XAXS600cd,
XRS XRS846,
XRHS XRHS1150E, XRHS1150, XRHS836, XRHS666C, XRHS666cd,
XRVS XRVS960E, XRVS1050, XRVS1275, XRVS1000, XRVS716,
XRXS XRXS1210,
XRYS XRYS1150,

 

After-sales Service: Best
Warranty: 1 Year
Principle: Screw
Application: Intermediate Back Pressure Type, High Back Pressure Type
Performance: Low Noise, Variable Frequency, Explosion-Proof
Mute: Mute

air compressor

How are air compressors utilized in the aerospace industry?

Air compressors play a crucial role in various applications within the aerospace industry. They are utilized for a wide range of tasks that require compressed air or gas. Here are some key uses of air compressors in the aerospace industry:

1. Aircraft Systems:

Air compressors are used in aircraft systems to provide compressed air for various functions. They supply compressed air for pneumatic systems, such as landing gear operation, braking systems, wing flap control, and flight control surfaces. Compressed air is also utilized for starting aircraft engines and for cabin pressurization and air conditioning systems.

2. Ground Support Equipment:

Air compressors are employed in ground support equipment used in the aerospace industry. They provide compressed air for tasks such as inflating aircraft tires, operating pneumatic tools for maintenance and repair, and powering air-driven systems for fueling, lubrication, and hydraulic operations.

3. Component Testing:

Air compressors are utilized in component testing within the aerospace industry. They supply compressed air for testing and calibrating various aircraft components, such as valves, actuators, pressure sensors, pneumatic switches, and control systems. Compressed air is used to simulate operating conditions and evaluate the performance and reliability of these components.

4. Airborne Systems:

In certain aircraft, air compressors are employed for specific airborne systems. For example, in military aircraft, air compressors are used for air-to-air refueling systems, where compressed air is utilized to transfer fuel between aircraft in mid-air. Compressed air is also employed in aircraft de-icing systems, where it is used to inflate inflatable de-icing boots on the wing surfaces to remove ice accumulation during flight.

5. Environmental Control Systems:

Air compressors play a critical role in the environmental control systems of aircraft. They supply compressed air for air conditioning, ventilation, and pressurization systems, ensuring a comfortable and controlled environment inside the aircraft cabin. Compressed air is used to cool and circulate air, maintain desired cabin pressure, and control humidity levels.

6. Engine Testing:

In the aerospace industry, air compressors are utilized for engine testing purposes. They provide compressed air for engine test cells, where aircraft engines are tested for performance, efficiency, and durability. Compressed air is used to simulate different operating conditions and loads on the engine, allowing engineers to assess its performance and make necessary adjustments or improvements.

7. Oxygen Systems:

In aircraft, air compressors are involved in the production of medical-grade oxygen for onboard oxygen systems. Compressed air is passed through molecular sieve beds or other oxygen concentrator systems to separate oxygen from other components of air. The generated oxygen is then supplied to the onboard oxygen systems, ensuring a sufficient and continuous supply of breathable oxygen for passengers and crew at high altitudes.

It is important to note that air compressors used in the aerospace industry must meet stringent quality and safety standards. They need to be reliable, efficient, and capable of operating under demanding conditions to ensure the safety and performance of aircraft systems.

air compressor

How do you maintain proper air quality in compressed air systems?

Maintaining proper air quality in compressed air systems is essential to ensure the reliability and performance of pneumatic equipment and the safety of downstream processes. Here are some key steps to maintain air quality:

1. Air Filtration:

Install appropriate air filters in the compressed air system to remove contaminants such as dust, dirt, oil, and water. Filters are typically placed at various points in the system, including the compressor intake, aftercoolers, and before point-of-use applications. Regularly inspect and replace filters to ensure their effectiveness.

2. Moisture Control:

Excessive moisture in compressed air can cause corrosion, equipment malfunction, and compromised product quality. Use moisture separators or dryers to remove moisture from the compressed air. Refrigerated dryers, desiccant dryers, or membrane dryers are commonly employed to achieve the desired level of dryness.

3. Oil Removal:

If the compressed air system utilizes oil-lubricated compressors, it is essential to incorporate proper oil removal mechanisms. This can include coalescing filters or adsorption filters to remove oil aerosols and vapors from the air. Oil-free compressors eliminate the need for oil removal.

4. Regular Maintenance:

Perform routine maintenance on the compressed air system, including inspections, cleaning, and servicing of equipment. This helps identify and address any potential issues that may affect air quality, such as leaks, clogged filters, or malfunctioning dryers.

5. Air Receiver Tank Maintenance:

Regularly drain and clean the air receiver tank to remove accumulated contaminants, including water and debris. Proper maintenance of the tank helps prevent contamination from being introduced into the compressed air system.

6. Air Quality Testing:

Periodically test the quality of the compressed air using appropriate instruments and methods. This can include measuring particle concentration, oil content, dew point, and microbial contamination. Air quality testing provides valuable information about the effectiveness of the filtration and drying processes and helps ensure compliance with industry standards.

7. Education and Training:

Educate personnel working with compressed air systems about the importance of air quality and the proper procedures for maintaining it. Provide training on the use and maintenance of filtration and drying equipment, as well as awareness of potential contaminants and their impact on downstream processes.

8. Documentation and Record-Keeping:

Maintain accurate records of maintenance activities, including filter replacements, drying system performance, and air quality test results. Documentation helps track the system’s performance over time and provides a reference for troubleshooting or compliance purposes.

By implementing these practices, compressed air systems can maintain proper air quality, minimize equipment damage, and ensure the integrity of processes that rely on compressed air.

air compressor

What is the difference between a piston and rotary screw compressor?

Piston compressors and rotary screw compressors are two common types of air compressors with distinct differences in their design and operation. Here’s a detailed explanation of the differences between these two compressor types:

1. Operating Principle:

  • Piston Compressors: Piston compressors, also known as reciprocating compressors, use one or more pistons driven by a crankshaft to compress air. The piston moves up and down within a cylinder, creating a vacuum during the intake stroke and compressing the air during the compression stroke.
  • Rotary Screw Compressors: Rotary screw compressors utilize two intermeshing screws (rotors) to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads.

2. Compression Method:

  • Piston Compressors: Piston compressors achieve compression through a positive displacement process. The air is drawn into the cylinder and compressed as the piston moves back and forth. The compression is intermittent, occurring in discrete cycles.
  • Rotary Screw Compressors: Rotary screw compressors also employ a positive displacement method. The compression is continuous as the rotating screws create a continuous flow of air and compress it gradually as it moves along the screw threads.

3. Efficiency:

  • Piston Compressors: Piston compressors are known for their high efficiency at lower flow rates and higher pressures. They are well-suited for applications that require intermittent or variable air demand.
  • Rotary Screw Compressors: Rotary screw compressors are highly efficient for continuous operation and are designed to handle higher flow rates. They are often used in applications with a constant or steady air demand.

4. Noise Level:

  • Piston Compressors: Piston compressors tend to generate more noise during operation due to the reciprocating motion of the pistons and valves.
  • Rotary Screw Compressors: Rotary screw compressors are generally quieter in operation compared to piston compressors. The smooth rotation of the screws contributes to reduced noise levels.

5. Maintenance:

  • Piston Compressors: Piston compressors typically require more frequent maintenance due to the higher number of moving parts, such as pistons, valves, and rings.
  • Rotary Screw Compressors: Rotary screw compressors have fewer moving parts, resulting in lower maintenance requirements. They often have longer service intervals and can operate continuously for extended periods without significant maintenance.

6. Size and Portability:

  • Piston Compressors: Piston compressors are available in both smaller portable models and larger stationary units. Portable piston compressors are commonly used in construction, automotive, and DIY applications.
  • Rotary Screw Compressors: Rotary screw compressors are typically larger and more suitable for stationary installations in industrial and commercial settings. They are less commonly used in portable applications.

These are some of the key differences between piston compressors and rotary screw compressors. The choice between the two depends on factors such as required flow rate, pressure, duty cycle, efficiency, noise level, maintenance needs, and specific application requirements.

China OEM Screw Type Air Diesel 7bar 70cfm 14.9kw CHINAMFG Compressor with Low Price Xas38kd   wholesaler China OEM Screw Type Air Diesel 7bar 70cfm 14.9kw CHINAMFG Compressor with Low Price Xas38kd   wholesaler
editor by CX 2023-10-11