Tag Archives: co2 compressor

China Best Sales Multi-Functional N2 CO2 O2 Gas Compressor Booster Piston Type Gas Booster Compressor lowes air compressor

Product Description

Product Parameters

   

Product Name

Oil Free Gas Compressor

Power Range

<55KW

Model No.

GWX- 3/5/10/20/40/60/80/CUSTOMIZED

Cooling Method

Air-cooled Or Water-cooled

Speed Range

300-600r/min

Compression Stages

Level 3-4

Exhaust Pressure Range

≤25.0Mpa

Inspiratory Pressure Range

0-0.6Mpa

 

Scope of supply (Note: Final design shall prevail)

The compressor includes oxygen pressure gauge (with certificate), oil pressure gauge (with certificate), safety valve (with certificate), electrical instrument control cabinet (with information), cooling pipeline and flywheel, etc.

Complete sets of spare parts and random tools.

Complete set of anchor screws (including motor anchor screws)

The complete set of electrical equipment supplied with the compressor includes the electric control box of the electric motor and the oxygen compressor, the electric pulley of the electric motor, the V-belt, the safety cover, the bottom rail of the electric motor, etc.

Technical documents and relevant drawings and packing list.

User-supplied materials include

Power, control cables and wires used for oxygen compressor installation, pressure gauge connection φ6×1 copper pipe

Water pipes, pipe fittings, shut-off valves for drainage systems

Connected to the first-stage intake pipe and the last-stage terminal discharge pipe, as well as the valves of the intake and exhaust pipes connected to the oxygen compressor


Gas Cylinder Filling Station

The gas plant consists of screw type air compressor, gas booster, air buffer tank, refrigerated dryer, filtration equipment, gas buffer tank, gas generation equipment, gas regulator, filling manifold,etc.

Step 1: Connecting A&B from the flange of the air compressor to the flange of the refrigerated dryer,using this black DN50 high pressure tube for connection.

Step 2: Connecting C&D from the gas generation machine to the gas compressor booster, using this black DN50 high pressure tube for connection.

Step 3: Connecting F from the gas booster to the filling manifold, using this black DN50 high pressure tube for connection.

Step 4: The filling manifold connect to gas cylinders.

The following points should be noted during installation:

1. The connection between each equipment needs to be sealed!
2. Gaskets and screws need to be tightened!
3. Do not have air leakage phenomenon!

1. Full Experience: 20+ Years Manufacturing and Exporting Experience in ASU Field.

2. Production Capability: 100+ PSA Oxygen Plant Be Sold Per Month.
3. Workshop Area: Our Factory Located in Xihu (West Lake) Dis. District, HangZhou, China, With 14000+ Square Meters, With 6 Production Lines,
With 60 Labors, With 3 Quality Inspectors, With 5 Excellent Engineers.
4. Sales HQ Area: Our International trade depart With 25 Professional salesmen; With 1500+ Square CHINAMFG Area;
5. After-sales Service: Online Technology Support & Video Meeting Support & Dispatch Engineer Support
6. Warranty: 1 Year Guaranty Period, 1 Year Spare Parts With Factory Cost
8. Our Advantage: Nice Quality! Nice Price! Nice Service!

Q1: Are you a trading company or manufacturer?

A: Firstly. we are a manufacturer, we have our own factory and engineers. 
Secondly, we have our own international trade teams to provide services for you.
Thirdly, we provide the lifetime technology support and the best after-sale service.
 

Q2: What is your term of payment?
A: 30%T/T in advance and balance before shipment.
B. 30% T/T in advance and Irrevocable L/C at Sight.
C. Accept negotiation.

Q3: How long is your delivery time?

A: Depending on what type of machine you are purchased.
3Nm3/h-20Nm3/h Booster compressor whose delivery time is 15-20 days.
20Nm3/h-60Nm3/h Booster compressor whose delivery time is 25-30days.
Over 60Nm3/h and customized capacity whose delivery time following the design. 
 

Q4: What is your product quality assurance policy?
A: We offer a warranty period of 1 year, free lifetime technology support.
B. Supporting third-part to have a inspection, also provide SGS, TUV certificated.
C. Accept negotiation.
 

Q5: Do you offer OEM/ODM service?

A: Yes.
 

Q6: Does your product used or new? RTS product or customized product?

A:Our machine is new unit, and following your specific require to design and make it.

/* May 10, 2571 16:49:51 */!function(){function d(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

air compressor

Can Gas Air Compressors Be Used in Cold Weather Conditions?

Gas air compressors are generally designed to operate in a wide range of environmental conditions, including cold weather. However, there are certain considerations and precautions to keep in mind when using gas air compressors in cold weather conditions. Here’s a detailed explanation:

1. Cold Start-Up:

In cold weather, starting a gas air compressor can be more challenging due to the low temperatures affecting the engine’s performance. It is important to follow the manufacturer’s recommendations for cold start procedures, which may include preheating the engine, using a cold weather starting aid, or ensuring the proper fuel mixture. These measures help facilitate smooth start-up and prevent potential damage to the engine.

2. Fuel Type:

Consider the type of fuel used in the gas air compressor. Some fuels, such as gasoline, can be more susceptible to cold weather issues like vapor lock or fuel line freezing. In extremely cold conditions, it may be necessary to use a fuel additive or switch to a fuel type that is better suited for cold weather operation, such as winter-grade gasoline or propane.

3. Lubrication:

Cold temperatures can affect the viscosity of the oil used in the compressor’s engine. It is important to use the recommended oil grade suitable for cold weather conditions. Thicker oil can become sluggish and impede proper lubrication, while oil that is too thin may not provide adequate protection. Consult the manufacturer’s guidelines for the appropriate oil viscosity range for cold weather operation.

4. Moisture Management:

In cold weather, moisture can condense more readily in the compressed air system. It is crucial to properly drain the moisture from the compressor tank and ensure the air lines are free from any accumulated moisture. Failure to manage moisture can lead to corrosion, freezing of air lines, and decreased performance.

5. Protection from Freezing:

In extremely cold conditions, it is important to protect the gas air compressor from freezing. This may involve using insulated covers or enclosures, providing heat sources in the compressor area, or storing the compressor in a temperature-controlled environment when not in use. Taking measures to prevent freezing helps maintain proper operation and prevents potential damage to the compressor components.

6. Monitoring Performance:

Regularly monitor the performance of the gas air compressor in cold weather conditions. Pay attention to any changes in operation, such as reduced air pressure, increased noise, or difficulties in starting. Promptly address any issues and consult the manufacturer or a qualified technician if necessary.

By considering these factors and taking appropriate precautions, gas air compressors can be effectively used in cold weather conditions. However, it is important to consult the specific guidelines provided by the manufacturer for your compressor model, as they may have additional recommendations or specifications for cold weather operation.

air compressor

Can Gas Air Compressors Be Used for Gas Line Maintenance?

Gas air compressors can be used for certain aspects of gas line maintenance, primarily for tasks that require compressed air. Here’s a detailed explanation:

1. Clearing Debris and Cleaning:

Gas air compressors can be utilized to clear debris and clean gas lines. Compressed air can be directed through the gas lines to dislodge and remove dirt, dust, rust particles, or other contaminants that may accumulate over time. This helps maintain the integrity and efficiency of the gas lines.

2. Pressure Testing:

Gas line maintenance often involves pressure testing to ensure the lines can withstand the required operating pressures. Gas air compressors can provide the necessary compressed air to pressurize the lines for testing purposes. By pressurizing the gas lines with compressed air, technicians can identify any leaks or weaknesses in the system.

3. Leak Detection:

Gas air compressors can also be used in conjunction with appropriate leak detection equipment to identify and locate gas leaks in the gas lines. Compressed air can be introduced into the lines, and the detection equipment can then identify any areas where the compressed air escapes, indicating a potential gas leak.

4. Valve and Equipment Maintenance:

Gas line maintenance may involve the inspection, maintenance, or replacement of valves and associated equipment. Compressed air can be used to clean and blow out debris from valves, purge lines, or assist in the disassembly and reassembly of components.

5. Pipe Drying:

Gas air compressors can aid in drying gas lines after maintenance or repairs. By blowing compressed air through the lines, any residual moisture can be removed, ensuring the gas lines are dry before being put back into service.

6. Precautions and Regulations:

When using gas air compressors for gas line maintenance, it is essential to follow safety precautions and adhere to relevant regulations. Gas line maintenance often involves working in hazardous environments, and proper training, equipment, and procedures must be followed to ensure the safety of personnel and the integrity of the gas system.

It is important to note that gas air compressors should not be used directly for pressurizing or transporting natural gas or other combustible gases. Gas line maintenance tasks involving gas air compressors primarily focus on using compressed air for specific maintenance and testing purposes, as outlined above.

In summary, gas air compressors can be useful for certain aspects of gas line maintenance, including clearing debris, pressure testing, leak detection, valve and equipment maintenance, and pipe drying. However, it is crucial to follow safety guidelines and regulations when working with gas lines and compressed air to ensure the safety and integrity of the gas system.

air compressor

What Fuels Are Commonly Used in Gas Air Compressors?

Gas air compressors can be powered by various fuels depending on the specific model and design. The choice of fuel depends on factors such as availability, cost, convenience, and environmental considerations. Here’s a detailed explanation of the fuels commonly used in gas air compressors:

1. Gasoline:

Gasoline is a widely used fuel in gas air compressors, particularly in portable models. Gasoline-powered compressors are popular due to the widespread availability of gasoline and the convenience of refueling. Gasoline engines are generally easy to start, and gasoline is relatively affordable in many regions. However, gasoline-powered compressors may emit more exhaust emissions compared to some other fuel options.

2. Diesel:

Diesel fuel is another common choice for gas air compressors, especially in larger industrial models. Diesel engines are known for their efficiency and durability, making them suitable for heavy-duty applications. Diesel fuel is often more cost-effective than gasoline, and diesel-powered compressors typically offer better fuel efficiency and longer runtime. Diesel compressors are commonly used in construction sites, mining operations, and other industrial settings.

3. Natural Gas:

Natural gas is a clean-burning fuel option for gas air compressors. It is a popular choice in areas where natural gas infrastructure is readily available. Natural gas compressors are often used in natural gas processing plants, pipeline operations, and other applications where natural gas is abundant. Natural gas-powered compressors offer lower emissions compared to gasoline or diesel, making them environmentally friendly.

4. Propane:

Propane, also known as liquefied petroleum gas (LPG), is commonly used as a fuel in gas air compressors. Propane-powered compressors are popular in construction, agriculture, and other industries where propane is used for various applications. Propane is stored in portable tanks, making it convenient for use in portable compressors. Propane-powered compressors are known for their clean combustion, low emissions, and easy availability.

5. Biogas:

In specific applications, gas air compressors can be fueled by biogas, which is produced from the decomposition of organic matter such as agricultural waste, food waste, or wastewater. Biogas compressors are used in biogas production facilities, landfills, and other settings where biogas is generated and utilized as a renewable energy source. The use of biogas as a fuel in compressors contributes to sustainability and reduces dependence on fossil fuels.

It’s important to note that the availability and suitability of these fuel options may vary depending on the region, infrastructure, and specific application requirements. When selecting a gas air compressor, it’s crucial to consider the compatibility of the compressor with the available fuel sources and to follow the manufacturer’s guidelines regarding fuel selection, storage, and safety precautions.

<img src="https://img.hzpt.com/img/air-compressor/air-compressor-L1.webp" alt="China Best Sales Multi-Functional N2 CO2 O2 Gas Compressor Booster Piston Type Gas Booster Compressor lowes air compressor”><img src="https://img.hzpt.com/img/air-compressor/air-compressor-L2.webp" alt="China Best Sales Multi-Functional N2 CO2 O2 Gas Compressor Booster Piston Type Gas Booster Compressor lowes air compressor”>
editor by lmc 2024-10-08

China OEM CO2 Compressor High Pressure Automatic Safety Protection air compressor CHINAMFG freight

Product Description

CO2 Compressor High Pressure Automatic Safety Protection             

  

Introduction

Oil free lubrication reciprocating piston type high pressure CO2 Compressor, there are air cooling and water cooling 2 cooling way, with single action and double action structure, and vertical and angle type etc.

Cape-Golden’s high pressure CO2 Compressor lubrication system, with excellent performance, stable operation, high efficiency and energy saving, long service life, widely used in oxygen canned filling, chemical process and plateau. Together with oxygen generator to form a relatively simple and safe high-pressure oxygen system.

The CO2 Compressor involved in gas compression are not lubricated with thin oil, and the piston ring, guide ring and other friction seals are made of special materials with self-lubricating properties.

 

Main Technical Parameters

 

No. Item Data
1 Compressor model GOW-15/4-150
2 Compressor type V type, reciprocating piston, water cooled, air cooled
3 Compression medium oxygen
4 Volume flow 15nm3/h
5 Intake pressure 4bar
6 Exhaust pressure 150bar
7 Inlet temperature ≤40ºC
8 Exhaust temperature no more than ambient temperature +15ºC after cooling
9 Driving mode explosion-proof motor
10 External size (length × width × height) 1650*950*1470mm
11 Weight Weight

 

Installation Site Requirements

The CO2 Compressor should be installed in an indoor place with good lighting and ventilation, clean environment, and low air humidity. The foundation should be firm and flat, and the ambient temperature should be controlled below 38 ° C.  There should be enough space around the machine for easy maintenance. When the CO2 Compressor runs, the vibration is small, and the requirements for the foundation are not strict. However, the thickness of the concrete of the foundation should be ≥20cm. The whole base should be closely attached to the horizontal plane of the foundation, which can be fixed with expansion bolts.

 

Process Characteristics

 

The CO2 Compressor is no liquid lubricant, and there is also no liquid lubricant in the crankcase supporting the crankshaft. The piston ring and guide ring is made of high quality modified PTFE with self-lubricating performance, the main parts of stainless steel and copper, aluminum and other material is not easy to produce sparks, all bearings with seals prevent loss of grease, the high pressure oxygen compressor lubrication system, the movement of the friction pair of grease are the antioxidant of oxygen compressor special grease.

 

Product Presentation

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Usage: Hydrogen, Nitrogen, Oxygen, Ozone
Purpose: Gas Filling
Parts: Valve
Application Fields: Medical
Noise Level: Low
Machine Size: Medium
Samples:
US$ 12870/Set
1 Set(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

Can Gas Air Compressors Be Used in Construction Projects?

Gas air compressors are widely used in construction projects due to their portability, versatility, and ability to provide the necessary compressed air for various applications. They are an essential tool in the construction industry, enabling the efficient and effective operation of pneumatic tools and equipment. Here’s a detailed explanation of how gas air compressors are used in construction projects:

1. Powering Pneumatic Tools:

Gas air compressors are commonly used to power a wide range of pneumatic tools on construction sites. These tools include jackhammers, nail guns, impact wrenches, concrete breakers, air drills, sanders, grinders, and paint sprayers. The compressed air generated by the gas air compressor provides the necessary force and power for efficient operation of these tools, enabling tasks such as concrete demolition, fastening, surface preparation, and finishing.

2. Air Blow and Cleaning Operations:

In construction projects, there is often a need to clean debris, dust, and dirt from work areas, equipment, and surfaces. Gas air compressors are used to generate high-pressure air for air blow and cleaning operations. This helps maintain cleanliness, remove loose materials, and prepare surfaces for further work, such as painting or coating.

3. Operating Pneumatic Systems:

Gas air compressors are employed to operate various pneumatic systems in construction projects. These systems include pneumatic control devices, pneumatic cylinders, and pneumatic actuators. Compressed air from the gas air compressor is used to control the movement of equipment, such as gates, doors, and barriers, as well as to operate pneumatic lifts, hoists, and other lifting mechanisms.

4. Concrete Spraying and Shotcreting:

Gas air compressors are utilized in concrete spraying and shotcreting applications. Compressed air is used to propel the concrete mixture through a nozzle at high velocity, ensuring proper adhesion and distribution on surfaces. This technique is commonly employed in applications such as tunnel construction, slope stabilization, and repair of concrete structures.

5. Sandblasting and Surface Preparation:

In construction projects that require surface preparation, such as removing old paint, rust, or coatings, gas air compressors are often used in conjunction with sandblasting equipment. Compressed air powers the sandblasting process, propelling abrasive materials such as sand or grit onto the surface to achieve effective cleaning and preparation before applying new coatings or finishes.

6. Tire Inflation and Equipment Maintenance:

Gas air compressors are utilized for tire inflation and equipment maintenance on construction sites. They provide compressed air for inflating and maintaining proper tire pressure in construction vehicles and equipment. Additionally, gas air compressors are used for general equipment maintenance, such as cleaning, lubrication, and powering pneumatic tools for repair and maintenance tasks.

7. Portable and Remote Operations:

Gas air compressors are particularly beneficial in construction projects where electricity may not be readily available or feasible. Portable gas air compressors provide the flexibility to operate in remote locations, allowing construction crews to utilize pneumatic tools and equipment without relying on a fixed power source.

Gas air compressors are an integral part of construction projects, facilitating a wide range of tasks and enhancing productivity. Their ability to power pneumatic tools, operate pneumatic systems, and provide compressed air for various applications makes them essential equipment in the construction industry.

air compressor

Can Gas Air Compressors Be Used for Sandblasting?

Yes, gas air compressors can be used for sandblasting. Sandblasting is a process that involves propelling abrasive materials, such as sand or grit, at high speeds to clean, etch, or prepare surfaces. Here’s a detailed explanation:

1. Compressed Air Requirement:

Sandblasting requires a reliable source of compressed air to propel the abrasive material. Gas air compressors, particularly those powered by gasoline or diesel engines, can provide the necessary compressed air for sandblasting operations. The compressors supply a continuous flow of compressed air at the required pressure to propel the abrasive material through the sandblasting equipment.

2. Portable and Versatile:

Gas air compressors are often portable and can be easily transported to different job sites, making them suitable for sandblasting applications in various locations. The portability of gas air compressors allows flexibility and convenience, especially when sandblasting needs to be performed on large structures, such as buildings, tanks, or bridges.

3. Pressure and Volume:

When selecting a gas air compressor for sandblasting, it is essential to consider the required pressure and volume of compressed air. Sandblasting typically requires higher pressures to effectively propel the abrasive material and achieve the desired surface treatment. Gas air compressors can provide higher pressure outputs compared to electric compressors, making them well-suited for sandblasting applications.

4. Compressor Size and Capacity:

The size and capacity of the gas air compressor should be chosen based on the specific requirements of the sandblasting project. Factors to consider include the size of the sandblasting equipment, the length of the air hose, and the desired duration of continuous operation. Selecting a gas air compressor with an appropriate tank size and airflow capacity ensures a consistent supply of compressed air during sandblasting.

5. Maintenance Considerations:

Regular maintenance is crucial for gas air compressors used in sandblasting applications. The abrasive nature of the sand or grit used in sandblasting can introduce particles into the compressor system, potentially causing wear or clogging. Regular inspection, cleaning, and maintenance of the compressor, including filters, valves, and hoses, help prevent damage and ensure optimal performance.

6. Safety Precautions:

When using gas air compressors for sandblasting, it is essential to follow appropriate safety precautions. Sandblasting generates airborne particles and dust, which can be hazardous if inhaled. Ensure proper ventilation, wear appropriate personal protective equipment (PPE), such as respiratory masks, goggles, and protective clothing, and follow recommended safety guidelines to protect the operator and others in the vicinity.

In summary, gas air compressors can be effectively used for sandblasting applications. They provide the necessary compressed air to propel abrasive materials, offer portability and versatility, and can deliver the required pressure and volume for efficient sandblasting operations. Proper compressor selection, maintenance, and adherence to safety precautions contribute to successful and safe sandblasting processes.

air compressor

How Do You Choose the Right Size Gas Air Compressor for Your Needs?

Choosing the right size gas air compressor is crucial to ensure optimal performance and efficiency for your specific needs. Selecting a compressor that is too small may result in insufficient airflow or pressure, while choosing one that is too large can lead to unnecessary energy consumption and higher costs. Here’s a detailed explanation of the factors to consider when choosing the right size gas air compressor:

1. Required Airflow:

Determine the airflow requirements of your applications. Consider the tools, equipment, or processes that will be powered by the compressor and their respective airflow demands. The required airflow is typically measured in cubic feet per minute (CFM). Determine the total CFM required, taking into account any simultaneous or intermittent tool usage.

2. Operating Pressure:

Identify the operating pressure required for your applications. Different tools and systems have specific pressure requirements, measured in pounds per square inch (PSI). Ensure that the compressor you choose can deliver the required pressure consistently.

3. Duty Cycle:

Consider the duty cycle, which refers to the amount of time the compressor will be in operation within a given period. Some applications may require continuous operation, while others involve intermittent or occasional use. Take into account the duty cycle to ensure that the compressor can handle the expected workload without overheating or experiencing excessive wear.

4. Tank Size:

The tank size of a gas air compressor determines its ability to store compressed air and provide a steady supply. A larger tank can help accommodate fluctuations in demand and reduce the frequency of the compressor cycling on and off. Consider the required storage capacity based on the specific applications and the desired balance between continuous operation and storage capacity.

5. Power Source:

Gas air compressors can be powered by different fuels, such as gasoline, diesel, natural gas, or propane. Consider the availability and cost of the fuel options in your location, as well as the specific requirements of your applications. Choose a compressor that is compatible with a power source that suits your needs.

6. Portability:

Determine if portability is a requirement for your applications. If you need to move the compressor to different job sites or locations, consider a portable model with features like wheels, handles, or a compact design that facilitates easy transportation.

7. Noise Level:

If noise is a concern in your working environment, consider the noise level of the compressor. Gas air compressors can vary in their noise output, and certain models may have noise-reducing features or insulation to minimize sound emissions.

8. Manufacturer Recommendations:

Consult the manufacturer’s recommendations and guidelines for selecting the appropriate compressor size for your specific needs. Manufacturers often provide guidelines based on the anticipated applications, airflow requirements, and other factors to help you make an informed decision.

By considering these factors and carefully assessing your specific requirements, you can choose the right size gas air compressor that meets your airflow, pressure, duty cycle, and other operational needs. It’s advisable to consult with industry professionals or compressor experts for guidance, especially for complex or specialized applications.

China OEM CO2 Compressor High Pressure Automatic Safety Protection   air compressor CHINAMFG freightChina OEM CO2 Compressor High Pressure Automatic Safety Protection   air compressor CHINAMFG freight
editor by CX 2024-04-09