Product Description
Company Profile
ZheZheJiang nshine Industrial Technology Co., Ltd., as a professional overseas sales team and sales service team, is committed to providing customers with piston compressor and diaphragm compressor solutions. The company adheres to the concept of one-stop service and provides customers with a complete set of air compressor equipment solutions.
Product Description
Our products mainly include 2 series: piston compressors and diaphragm compressors, covering more than 30 types of products. These products are widely used in fields such as hydrogen energy, semiconductors, chemicals, petrochemicals, and natural gas transportation. We have over 3000 industrial enterprise users, covering all aspects of the hydrogen energy industry chain, including hydrogen production, filling, and hydrogen refueling station compressors, and providing a complete set of gas compression equipment solutions. As an efficient, energy-saving, environmentally friendly, and reliable compressor type, diaphragm compressors have also achieved great success and have been widely used in various fields.
Product Description:
Piston compressors are a type of positive displacement compressor that are commonly used in the chemical industry for a variety of applications. These compressors work by using a piston and cylinder to compress gas or air, which creates pressure and allows it to be transported through pipelines or used in other processes.
Diaphragm compressor :according to the needs of the user, choose the right type of compressor to meet the needs of the user. The diaphragm of the metal diaphragm compressor completely separates the gas from the hydraulic oil system to ensure the purity of the gas and no pollution to the gas. At the same time, advanced manufacturing technology and accurate membrane cavity design technology are adopted to ensure the service life of the diaphragm compressor diaphragm. No pollution: the metal diaphragm group completely separates the process gas from the hydraulic oil and lubricating oil parts to ensure the gas purity.Our compressors can compress ammonia, propylene, nitrogen, oxygen, helium, hydrogen, hydrogen chloride, argon, hydrogen chloride, hydrogen sulfide, hydrogen bromide, ethylene, acetylene, etc. (Nitrogen diaphragm compressor, bottle filling compressor, oxygen diaphragm compressor)and especially fit for all kinds of toxic radioactive corrosive compressor
In the chemical industry, piston compressors are used for a variety of functions, including:
Gas compression – Piston compressors are used to compress natural gas, hydrogen, and other gases used in chemical processes. product-list-1.html product-list-1.html
Pneumatic conveying – Piston compressors are used to transport materials in a powdered or granular form through pipelines.
Refrigeration – Piston compressors are used in refrigeration systems to compress refrigerant gases, which are then used to cool industrial processes and equipment.
Process air compression – Piston compressors are used to compress air for use in chemical processes, such as in pneumatic equipment and air-powered tools.
Piston compressors are popular in the chemical industry because they are reliable, efficient, and can handle specific types of gases and air with ease. Additionally, they require minimal maintenance and can operate at high pressures, making them suitable for many applications
When choosing a piston compressor for use in the chemical industry, it is important to consider factors such as:
Type of gas or air being compressed – Different types of gases and air require different types of compression.
Required flow rate and pressure – The capacity and pressure capabilities of the compressor must meet the requirements of the application.
Environmental conditions – Factors such as temperature, humidity, and altitude can affect the performance of the compressor.
Maintenance requirements – The frequency and complexity of maintenance and servicing should be considered when selecting a compressor.
Overall, piston compressors are an important tool in the chemical industry, providing reliable and efficient compression for a variety of applications. Choosing the right compressor for the specific application is critical to ensuring optimal performance and efficiency.
Piston compressor model:
1. Single-stage piston compressor
Single-stage piston compressor is the simplest compressor, mainly composed of cylinder, piston, crankshaft, connecting rod, valve and other components. It has the advantages of simple structure, easy maintenance and low price, so it is widely used in low-pressure air compression, nitrogen and oxygen production and other occasions. Parameters such as air output volume, air outlet pressure, and rotational speed need to be considered when selecting models.
Common models include: W-1.8/5, W-3.6/5, W-4/5, W-6/5, etc.
2. Two-stage piston compressor
A two-stage piston compressor consists of 2 compressors. The first-stage compressor compresses the gas to a higher intermediate pressure, and then is cooled by the cooler and sent to the second-stage compressor to compress it again to the final pressure. Compared with single-stage piston compressors, two-stage piston compressors have higher outlet pressure, higher efficiency, and wider application range.
Common models include: W-1/3-2/3, W-2.5/5-2.5/5, W-3/6-3.6/6, etc.
3. High-pressure piston compressor
High-pressure piston compressors are mainly used to compress high-pressure gases, such as natural gas, hydrogen, helium, etc. It has a complex structure and needs to be equipped with auxiliary equipment such as gas coolers, gas inlet filters, pressure controllers, etc. It also has the advantages of high outlet pressure, low energy consumption, and smooth operation.
Common models include: W-3/20, W-6/30, W-9/30, etc.
Introduction to the meaning of the model number of diaphragm compressor:
For example: 1G3V-300/4-15 AND GV3-310/22-62
1G3V-300/4-15 each represents as follows:
“1” means double first-class product;
“G” indicates diaphragm compressor;
“3” indicates the 3rd series of the product manufacturer’s diaphragm compressor series, and does not indicate piston force; the larger the number, the greater the piston force.
“V” means V-shaped structure.
“3V” means there are main and auxiliary connecting rods, and the crankcase is split.
“300” indicates the amount of gas the compressor handles per hour under standard conditions;
“4” means the inlet pressure is 4kg/cm2 (ie 0.4MPa);
“15” means the exhaust pressure is 15kg/cm2 (ie 1.5MPa).
GV3-310/22-62 each represents as follows:
“G” indicates diaphragm compressor;
“V” means V-shaped structure.
“3” indicates the 3rd series of the product manufacturer’s diaphragm compressor series, and does not indicate piston force; the larger the number, the greater the piston force.
“V3” is another series, indicating a side-by-side structure of connecting rods and a one-piece crankcase.
Basic information:Piston compressor model parameters:
| Piston compressor model parameters | |||||||||
| Piston force | 800 | 500 | 320 | 250 | 160 | 100 | 65 | 45 | 30 |
| Types of compressed gas | Hydrogen, nitrogen, natural gas, ethylene, propylene, coal gas, hydrogen chloride, hydrogen fluoride, carbon dioxide, methyl chloride, carbon monoxide, acetylene ammonia, hydrogen monochloride, difluoromethane, tetrafluoroethylene, pentafluoroethylene, hexafluoroethylene, etc. | ||||||||
| discharge pressureMPa(G) | <=25 | <=30 | |||||||
| Compression levels | 1-4levels | 2-6levels | 1-3levels | ||||||
| Number of columns | 2–4 | 2–6 | 1–4 | ||||||
| Layout form/Type/Model | M/D | M/D | M/D | M/D | M/D | M/D/P | M/D/P | M/D/P | L/P |
| route(mm) | 280-360 | 240-320 | 180-240 | 200 | |||||
| Rotating speed(rpm) | 300-375 | 333-450 | 375-585 | 420-485 | |||||
| Maximum motor power(KW) | 5600 | 3600 | 3300 | 2700 | 1250 | 800 | 560 | 250 | 75 |
| skid mounted | non-skid mounted | skid mounted/non -skid mounted | |||||||
| Digital Analog Computing | yes | ||||||||
| systolic algorithm | yes | ||||||||
| test | According to the quality standard, chemical analysis, mechanical performance, flaw detection, hydrostatic test, airtight test and other inspections are carried out for each component | ||||||||
| Factory inspection | According to the quality standard, carry out no-load mechanical operation test | ||||||||
| Customer acceptance | Actual working conditions, 72-hour assessment and acceptance | ||||||||
| Application | Hydrogen energy, silicon, fluorine chemical industry, petrochemical industry, metallurgy, medicine, aerospace, nuclear power | ||||||||
Basic information:Diaphragm compressor model parameters
| Piston force | 250 | 160 | 110 | 80 | 60 | 45 | 35 | 45 | 10 |
| Types of compressed gas | Hydrogen, nitrogen, oxygen, helium, xenon, hydrogen chloride, hydrogen sulfide, nitrogen trifluoride, silicon tetrafluoride, silane | ||||||||
| Discharge pressureMPa(G) | <=100 | ||||||||
| Compression levels | 1-3levels | ||||||||
| Layout form/Type/Model | M/D | D/L | D/L/Z | V/Z | L/Z | L/Z | |||
| Route(mm) | 210 | 210/1/0 | 180 | 180 | 150 | 130 | 130 | 105 | 70 |
| Rotating speed(rpm) | 260 | 360-420 | |||||||
| Maximum motor power(KW) | 355 | 250 | 200 | 160 | 110 | 55 | 30 | 22 | 18.5 |
| Skid mounted | skid mounted | ||||||||
| Digital Analog Computing | yes | ||||||||
| Systolic algorithm | According to demand | ||||||||
| Test | According to the quality standard, chemical analysis, mechanical performance, flaw detection, hydrostatic test, airtight test and other inspections are carried out for each component | ||||||||
| Factory inspection | Carry out nitrogen or air full-load mechanical operation test according to quality requirements | ||||||||
| Customer acceptance | Actual working conditions, 72-hour assessment and acceptance | ||||||||
| Application | Hydrogen energy, silicon, fluorine chemical industry, petrochemical industry, metallurgy, medicine, aerospace, nuclear power | ||||||||
Detailed Photos
After Sales Service
We have an independent service operation and maintenance team, providing customers with various support and services, including technical support, debugging services, spare parts supply, renovation and upgrading, and major maintenance. We always adhere to the principle of customer-centrism, ensuring the safe and stable operation of customer equipment. Our service team is committed to providing reliable support for customers’ operations 24/7.
Training plan
1)Company training
Before the unit is delivered, that is during the unit assembly period, users will be provided with a one-week on-site training by the company. Provide local accommodation and transportation facilities, and provide free venues, teaching materials, equipment, tools, etc. required for training. The company training content is as follows:
The working principle, structure and technical performance of the unit.
Unit assembly and adjustment, unit testing.
Operation of the unit, remote/local operation, manual/automatic operation, daily operation and management, familiar with the structure of each system of the unit.
Routine maintenance and upkeep of the unit, and precautions for operation and maintenance.
Analysis and troubleshooting of common faults, and emergency handling methods.
2) On-site training
During the installation and trial operation of the unit, on-site training will be conducted to teach the principles, structure, operation, maintenance, troubleshooting of common faults and other knowledge of the unit, so as to further become familiar with the various systems of the unit, so that the purchaser can independently and correctly operate the unit. Operation, maintenance and management.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | 12 Month |
|---|---|
| Warranty: | 12 Month |
| Lubrication Style: | Lubricated |
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
What Is the Fuel Efficiency of Gas Air Compressors?
The fuel efficiency of gas air compressors can vary depending on several factors, including the compressor’s design, engine size, load capacity, and usage patterns. Gas air compressors typically use internal combustion engines powered by gasoline or propane to generate the mechanical energy required for compressing air. Here’s a detailed explanation of the factors that can influence the fuel efficiency of gas air compressors:
1. Engine Design and Size:
The design and size of the engine in a gas air compressor can impact its fuel efficiency. Engines with advanced technologies such as fuel injection and electronic controls tend to offer better fuel efficiency compared to older carbureted engines. Additionally, larger engines may consume more fuel to produce the required power, resulting in lower fuel efficiency compared to smaller engines for the same workload.
2. Load Capacity and Usage Patterns:
The load capacity and usage patterns of the gas air compressor play a significant role in fuel efficiency. Compressors operating at or near their maximum load capacity for extended periods may consume more fuel compared to compressors operating at lower loads. Additionally, compressors used intermittently or for lighter tasks may have better fuel efficiency due to reduced demand on the engine.
3. Maintenance and Tuning:
Proper maintenance and tuning of the gas air compressor’s engine can improve fuel efficiency. Regular maintenance tasks such as oil changes, air filter cleaning/replacement, spark plug inspection, and tuning the engine to the manufacturer’s specifications can help ensure optimal engine performance and fuel efficiency.
4. Operating Conditions:
The operating conditions, including ambient temperature, altitude, and humidity, can affect the fuel efficiency of gas air compressors. Extreme temperatures or high altitudes may require the engine to work harder, resulting in increased fuel consumption. Additionally, operating in humid conditions can affect the combustion process and potentially impact fuel efficiency.
5. Fuel Type:
The type of fuel used in the gas air compressor can influence its fuel efficiency. Gasoline and propane are common fuel choices for gas air compressors. The energy content and combustion characteristics of each fuel can affect the amount of fuel consumed per unit of work done. It is important to consider the specific fuel requirements and recommendations of the compressor manufacturer for optimal fuel efficiency.
6. Operator Skills and Practices:
The skills and practices of the operator can also impact fuel efficiency. Proper operation techniques, such as avoiding excessive idling, maintaining consistent engine speeds, and minimizing unnecessary load cycles, can contribute to improved fuel efficiency.
It is important to note that specific fuel efficiency ratings for gas air compressors can vary widely depending on the aforementioned factors. Manufacturers may provide estimated fuel consumption rates or fuel efficiency data for their specific compressor models, which can serve as a reference point when comparing different models or making purchasing decisions.
Ultimately, to maximize fuel efficiency, it is recommended to select a gas air compressor that suits the intended application, perform regular maintenance, follow the manufacturer’s guidelines, and operate the compressor efficiently based on the workload and conditions.
.webp)
Can Gas Air Compressors Be Used for Natural Gas Compression?
Gas air compressors are not typically used for natural gas compression. Here’s a detailed explanation:
1. Different Compressed Gases:
Gas air compressors are specifically designed to compress atmospheric air. They are not typically designed or suitable for compressing natural gas. Natural gas, which is primarily composed of methane, requires specialized compressors designed to handle the unique properties and characteristics of the gas.
2. Safety Considerations:
Natural gas compression involves handling a flammable and potentially hazardous substance. Compressing natural gas requires specialized equipment that meets stringent safety standards to prevent leaks, minimize the risk of ignition or explosion, and ensure the safe handling of the gas. Gas air compressors may not have the necessary safety features or materials to handle natural gas safely.
3. Equipment Compatibility:
Natural gas compression systems typically include components such as gas compressors, gas coolers, separators, and control systems that are specifically designed and engineered for the compression and handling of natural gas. These components are built to withstand the specific demands and conditions associated with natural gas compression, including the high pressures and potential presence of impurities.
4. Efficiency and Performance:
Compressing natural gas requires specialized compressors that can handle the high-pressure ratios and volumetric flow rates associated with the gas. Gas air compressors are generally not designed to achieve the same compression ratios and performance levels required for natural gas compression. Using gas air compressors for natural gas compression would likely result in inefficient operation and suboptimal performance.
5. Regulatory Compliance:
Compressing natural gas is subject to various regulations and standards to ensure safety, environmental protection, and compliance with industry guidelines. These regulations often dictate specific requirements for equipment, materials, and operating procedures in natural gas compression systems. Gas air compressors may not meet these regulatory requirements for natural gas compression.
6. Industry Standards and Practices:
The natural gas industry has well-established standards and best practices for equipment selection, installation, and operation in gas compression systems. These standards are based on the specific requirements and characteristics of natural gas. Gas air compressors do not align with these industry standards and practices, which are essential for safe and efficient natural gas compression.
In summary, gas air compressors are not suitable for natural gas compression. Natural gas compression requires specialized equipment designed to handle the unique properties and safety considerations associated with the gas. Compressors specifically engineered for natural gas compression offer the necessary performance, safety features, and regulatory compliance required for efficient and reliable operation in natural gas compression systems.
.webp)
Are There Different Types of Gas Air Compressors Available?
Yes, there are different types of gas air compressors available, each designed to suit specific applications and requirements. These different types vary in terms of design, power source, configuration, and intended use. Here’s a detailed explanation of the various types of gas air compressors:
1. Reciprocating Gas Air Compressors:
Reciprocating gas air compressors, also known as piston compressors, use a reciprocating motion of one or more pistons to compress the air. These compressors are commonly used for small to medium-scale applications and are available in both single-stage and two-stage configurations. Single-stage compressors compress the air in a single stroke, while two-stage compressors use an additional cylinder for further compression, resulting in higher pressures.
2. Rotary Screw Gas Air Compressors:
Rotary screw gas air compressors utilize two interlocking helical screws to compress the air. These compressors are known for their continuous and efficient operation, making them suitable for demanding industrial applications. They are often used in industries such as manufacturing, construction, and automotive where a constant supply of compressed air is required.
3. Rotary Vane Gas Air Compressors:
Rotary vane gas air compressors use a rotor with sliding vanes to compress the air. As the rotor rotates, the vanes slide in and out, creating compression chambers that compress the air. These compressors are compact, reliable, and often used for smaller-scale applications or in situations where space is limited.
4. Centrifugal Gas Air Compressors:
Centrifugal gas air compressors operate by accelerating the air using a high-speed impeller. The accelerated air is then redirected into a diffuser, which converts the velocity energy into pressure energy. These compressors are commonly used for large-scale applications requiring high volumes of compressed air, such as in power plants, refineries, or chemical processing industries.
5. Oil-Free Gas Air Compressors:
Oil-free gas air compressors are designed to provide clean, oil-free compressed air. They feature special sealing mechanisms and materials to prevent oil contamination in the compressed air. These compressors are commonly used in industries where oil-free air is essential, such as food and beverage processing, pharmaceuticals, electronics manufacturing, and painting applications.
6. Portable Gas Air Compressors:
Portable gas air compressors are specifically designed for mobility and ease of transportation. These compressors often feature wheels, handles, or trailers for convenient movement. They are commonly used in construction sites, remote job locations, outdoor events, or other situations where compressed air is needed at different locations.
7. High-Pressure Gas Air Compressors:
High-pressure gas air compressors are designed to generate compressed air at elevated pressures. These compressors are used in applications that require air pressure higher than the standard range, such as in diving operations, breathing air systems, or specialized industrial processes.
8. Biogas Air Compressors:
Biogas air compressors are specifically designed to compress biogas, which is generated from the decomposition of organic matter. These compressors are used in biogas production facilities, landfills, wastewater treatment plants, or agricultural operations where biogas is produced and utilized as an energy source.
These are just a few examples of the different types of gas air compressors available. Each type has its own advantages and is suitable for specific applications based on factors such as required airflow, pressure, mobility, oil-free operation, and environmental considerations. It’s important to choose the appropriate type of gas air compressor based on the specific needs of the application to ensure optimal performance and efficiency.


editor by CX 2024-03-03
China Best Sales High Capacity Purity Pressure Piston Displacement Reciprocating Diaphragm Regeneration Gas Compressor with high quality
Product Description
Company Profile
ZheZheJiang nshine Industrial Technology Co., Ltd., as a professional overseas sales team and sales service team, is committed to providing customers with piston compressor and diaphragm compressor solutions. The company adheres to the concept of one-stop service and provides customers with a complete set of compressor equipment solutions.
Product Description
Our products mainly include 2 series: piston compressors and diaphragm compressors, covering more than 30 types of products. These products are widely used in fields such as hydrogen energy, semiconductors, chemicals, petrochemicals, and natural gas transportation. We have over 3000 industrial enterprise users, covering all aspects of the hydrogen energy industry chain, including hydrogen production, filling, and hydrogen refueling station compressors, and providing a complete set of gas compression equipment solutions. As an efficient, energy-saving, environmentally friendly, and reliable compressor type, diaphragm compressors have also achieved great success and have been widely used in various fields.
Piston compressor is a kind of piston reciprocating motion to make gas pressurization and gas delivery compressor mainly consists of working chamber, transmission parts, body and auxiliary parts. The working chamber is directly used to compress the gas, the piston is driven by the piston rod in the cylinder for reciprocating motion, the volume of the working chamber on both sides of the piston changes in turn, the volume decreases on 1 side of the gas due to the pressure increase through the valve discharge, the volume increases on 1 side due to the reduction of air pressure through the valve to absorb the gas.
Diaphragm compressor according to the needs of the user, choose the right type of compressor to meet the needs of the user. The diaphragm of the metal diaphragm compressor completely separates the gas from the hydraulic oil system to ensure the purity of the gas and no pollution to the gas. At the same time, advanced manufacturing technology and accurate membrane cavity design technology are adopted to ensure the service life of the diaphragm compressor diaphragm. No pollution: the metal diaphragm group completely separates the process gas from the hydraulic oil and lubricating oil parts to ensure the gas purity.
Our compressors can compress ammonia, propylene, nitrogen, oxygen, helium, hydrogen, hydrogen chloride, argon, hydrogen chloride, hydrogen sulfide, hydrogen bromide, ethylene, acetylene, etc. (Nitrogen diaphragm compressor, bottle filling compressor, oxygen diaphragm compressor)
The compressor outlet pressure produced by the company can reach up to 50MPa.Our products cover the fields of food and medicine, metallurgy, electronics, textiles, clean energy, aerospace, nuclear power, petrochemicals, and other fields.
Reciprocating Gas Compressor are widely used in many industries related to the compression and supply of gas to consumers. Like oil and chemical industry, oil refineries and more. Various technological processes can include corrosive, inert, poisonous and explosive gases, which must be treated to a clean gas without impurities of oil.
Depending on the type of equipment, work with different gases, such as:
Compressor units can be made on single frame design. With interstage devices and all necessary piping, placed on a single platform with a compressor.
Compressor units can be manufactured in the version “without lubrication of cylinders and oil seals”;
The modern automation system of the compressor units guarantees the safety and easy use of the equipment.
Reducing the time of commissioning.
The machine is customized according to customer need, the specific price depends on the configuration requirements (gas composition, exhaust volume and pressure).quotation will be given according the specific parameters.
Product Parameters
| Piston compressor model parameters | |||||||||
| Piston force | 800 | 500 | 320 | 250 | 160 | 100 | 65 | 45 | 30 |
| Types of compressed gas | Hydrogen, nitrogen, natural gas, ethylene, propylene, coal gas, hydrogen chloride, hydrogen fluoride, carbon dioxide, methyl chloride, carbon monoxide, acetylene ammonia, hydrogen monochloride, difluoromethane, tetrafluoroethylene, pentafluoroethylene, hexafluoroethylene, etc. | ||||||||
| discharge pressureMPa(G) | <=25 | <=30 | |||||||
| Compression levels | 1-4levels | 2-6levels | 1-3levels | ||||||
| Number of columns | 2–4 | 2–6 | 1–4 | ||||||
| Layout form | M/D | M/D | M/D | M/D | M/D | M/D/P | M/D/P | M/D/P | L/P |
| route(mm) | 280-360 | 240-320 | 180-240 | 200 | |||||
| Rotating speed(rpm) | 300-375 | 333-450 | 375-585 | 420-485 | |||||
| Maximum motor power(KW) | 5600 | 3600 | 3300 | 2700 | 1250 | 800 | 560 | 250 | 75 |
| skid mounted | non-skid mounted | skid mounted/non -skid mounted | |||||||
| Digital Analog Computing | yes | ||||||||
| systolic algorithm | yes | ||||||||
| test | According to the quality standard, chemical analysis, mechanical performance, flaw detection, hydrostatic test, airtight test and other inspections are carried out for each component | ||||||||
| Factory inspection | According to the quality standard, carry out no-load mechanical operation test | ||||||||
| Customer acceptance | Actual working conditions, 72-hour assessment and acceptance | ||||||||
| Application | Hydrogen energy, silicon, fluorine chemical industry, petrochemical industry, metallurgy, medicine, aerospace, nuclear power | ||||||||
Detailed Photos
After Sales Service
In addition to the high-quality performance of our products, we also attach great importance to providing customers with comprehensive services. We have an independent service operation and maintenance team, providing customers with various support and services, including technical support, debugging services, spare parts supply, renovation and upgrading, and major maintenance. We always adhere to the principle of customer-centrism, ensuring the safe and stable operation of customer equipment. Our service team is committed to providing reliable support for customers’ operations 24/7.
Training plan
Technical training is divided into 2 parts: company training and on-site training.
1)Company training
Before the unit is delivered, that is during the unit assembly period, users will be provided with a one-week on-site training by the company. Provide local accommodation and transportation facilities, and provide free venues, teaching materials, equipment, tools, etc. required for training. The company training content is as follows:
The working principle, structure and technical performance of the unit.
Unit assembly and adjustment, unit testing.
Operation of the unit, remote/local operation, manual/automatic operation, daily operation and management, familiar with the structure of each system of the unit.
Routine maintenance and upkeep of the unit, and precautions for operation and maintenance.
Analysis and troubleshooting of common faults, and emergency handling methods.
2) On-site training
During the installation and trial operation of the unit, on-site training will be conducted to teach the principles, structure, operation, maintenance, troubleshooting of common faults and other knowledge of the unit, so as to further become familiar with the various systems of the unit, so that the purchaser can independently and correctly operate the unit. Operation, maintenance and management.
Packaging & Shipping
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | 12 Month |
|---|---|
| Warranty: | 12 Month |
| Lubrication Style: | Lubricated |
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
How Do Gas Air Compressors Compare to Diesel Air Compressors?
When comparing gas air compressors to diesel air compressors, there are several factors to consider, including fuel efficiency, power output, cost, maintenance requirements, and environmental impact. Here’s a detailed explanation of how these two types of air compressors compare:
1. Fuel Efficiency:
Diesel air compressors are generally more fuel-efficient compared to gas air compressors. Diesel engines have higher energy density and better overall efficiency than gasoline engines. This means that diesel compressors can produce more work output per unit of fuel consumed, resulting in lower fuel costs and longer runtimes between refueling.
2. Power Output:
Diesel air compressors typically provide higher power output compared to gas air compressors. Diesel engines are known for their robustness and ability to generate higher torque, making them suitable for heavy-duty applications that require a larger volume of compressed air or higher operating pressures.
3. Cost:
In terms of upfront cost, gas air compressors are generally more affordable compared to diesel air compressors. Gasoline engines and components are typically less expensive than their diesel counterparts. However, it’s important to consider long-term costs, including fuel expenses and maintenance, which can vary depending on factors such as fuel prices and usage patterns.
4. Maintenance Requirements:
Diesel air compressors often require more regular maintenance compared to gas air compressors. This is because diesel engines have additional components such as fuel filters, water separators, and injector systems that need periodic servicing. Gas air compressors, on the other hand, may have simpler maintenance requirements, resulting in reduced maintenance costs and time.
5. Environmental Impact:
When it comes to environmental impact, diesel air compressors produce higher emissions compared to gas air compressors. Diesel engines emit more particulate matter, nitrogen oxides (NOx), and carbon dioxide (CO2) compared to gasoline engines. Gas air compressors, especially those powered by propane, tend to have lower emissions and are considered more environmentally friendly.
6. Portability and Mobility:
Gas air compressors are generally more portable and easier to move compared to diesel air compressors. Gasoline engines are typically lighter and more compact, making gas air compressors suitable for applications where mobility is essential, such as construction sites or remote locations.
It’s important to note that the specific requirements of the application and the availability of fuel sources also play a significant role in choosing between gas air compressors and diesel air compressors. Each type has its own advantages and considerations, and the choice should be based on factors such as the intended usage, operating conditions, budget, and environmental considerations.
In conclusion, gas air compressors are often more affordable, portable, and suitable for lighter applications, while diesel air compressors offer higher power output, fuel efficiency, and durability for heavy-duty operations. Consider the specific needs and factors mentioned above to determine the most appropriate choice for your particular application.
.webp)
Can Gas Air Compressors Be Used for Gas Line Maintenance?
Gas air compressors can be used for certain aspects of gas line maintenance, primarily for tasks that require compressed air. Here’s a detailed explanation:
1. Clearing Debris and Cleaning:
Gas air compressors can be utilized to clear debris and clean gas lines. Compressed air can be directed through the gas lines to dislodge and remove dirt, dust, rust particles, or other contaminants that may accumulate over time. This helps maintain the integrity and efficiency of the gas lines.
2. Pressure Testing:
Gas line maintenance often involves pressure testing to ensure the lines can withstand the required operating pressures. Gas air compressors can provide the necessary compressed air to pressurize the lines for testing purposes. By pressurizing the gas lines with compressed air, technicians can identify any leaks or weaknesses in the system.
3. Leak Detection:
Gas air compressors can also be used in conjunction with appropriate leak detection equipment to identify and locate gas leaks in the gas lines. Compressed air can be introduced into the lines, and the detection equipment can then identify any areas where the compressed air escapes, indicating a potential gas leak.
4. Valve and Equipment Maintenance:
Gas line maintenance may involve the inspection, maintenance, or replacement of valves and associated equipment. Compressed air can be used to clean and blow out debris from valves, purge lines, or assist in the disassembly and reassembly of components.
5. Pipe Drying:
Gas air compressors can aid in drying gas lines after maintenance or repairs. By blowing compressed air through the lines, any residual moisture can be removed, ensuring the gas lines are dry before being put back into service.
6. Precautions and Regulations:
When using gas air compressors for gas line maintenance, it is essential to follow safety precautions and adhere to relevant regulations. Gas line maintenance often involves working in hazardous environments, and proper training, equipment, and procedures must be followed to ensure the safety of personnel and the integrity of the gas system.
It is important to note that gas air compressors should not be used directly for pressurizing or transporting natural gas or other combustible gases. Gas line maintenance tasks involving gas air compressors primarily focus on using compressed air for specific maintenance and testing purposes, as outlined above.
In summary, gas air compressors can be useful for certain aspects of gas line maintenance, including clearing debris, pressure testing, leak detection, valve and equipment maintenance, and pipe drying. However, it is crucial to follow safety guidelines and regulations when working with gas lines and compressed air to ensure the safety and integrity of the gas system.
.webp)
What Safety Precautions Should Be Taken When Operating Gas Air Compressors?
Operating gas air compressors safely is essential to prevent accidents, injuries, and equipment damage. It’s important to follow proper safety precautions to ensure a safe working environment. Here’s a detailed explanation of the safety precautions that should be taken when operating gas air compressors:
1. Read and Follow the Manufacturer’s Instructions:
Before operating a gas air compressor, carefully read and understand the manufacturer’s instructions, user manual, and safety guidelines. Follow the recommended procedures, maintenance schedules, and any specific instructions provided by the manufacturer.
2. Provide Adequate Ventilation:
Gas air compressors generate exhaust fumes and heat during operation. Ensure that the operating area is well-ventilated to prevent the accumulation of exhaust gases, which can be harmful or even fatal in high concentrations. If operating indoors, use ventilation systems or open windows and doors to allow fresh air circulation.
3. Wear Personal Protective Equipment (PPE):
Wear appropriate personal protective equipment (PPE) when operating a gas air compressor. This may include safety glasses, hearing protection, gloves, and sturdy footwear. PPE helps protect against potential hazards such as flying debris, noise exposure, and hand injuries.
4. Perform Regular Maintenance:
Maintain the gas air compressor according to the manufacturer’s recommendations. Regularly inspect the compressor for any signs of wear, damage, or leaks. Keep the compressor clean and free from debris. Replace worn-out parts and components as needed to ensure safe and efficient operation.
5. Preventive Measures for Fuel Handling:
If the gas air compressor is powered by fuels such as gasoline, diesel, or propane, take appropriate precautions for fuel handling:
- Store fuel in approved containers and in well-ventilated areas away from ignition sources.
- Refuel the compressor in a well-ventilated outdoor area, following proper refueling procedures and avoiding spills.
- Handle fuel with caution, ensuring that there are no fuel leaks or spills near the compressor.
- Never smoke or use open flames near the compressor or fuel storage areas.
6. Use Proper Electrical Connections:
If the gas air compressor requires electrical power, follow these electrical safety precautions:
- Ensure that the electrical connections and wiring are properly grounded and in compliance with local electrical codes.
- Avoid using extension cords unless recommended by the manufacturer.
- Inspect electrical cords and plugs for damage before use.
- Do not overload electrical circuits or use improper voltage sources.
7. Secure the Compressor:
Ensure that the gas air compressor is securely positioned and stable during operation. Use appropriate mounting or anchoring methods, especially for portable compressors. This helps prevent tipping, vibrations, and movement that could lead to accidents or injuries.
8. Familiarize Yourself with Emergency Procedures:
Be familiar with emergency procedures and know how to shut off the compressor quickly in case of an emergency or malfunction. Have fire extinguishers readily available and know how to use them effectively. Develop an emergency action plan and communicate it to all personnel working with or around the compressor.
It’s crucial to prioritize safety when operating gas air compressors. By following these safety precautions and using common sense, you can minimize the risks associated with compressor operation and create a safer work environment for yourself and others.


editor by CX 2024-02-28
China high quality Economical Fixed High Pressure Gas Compressor Good Price air compressor repair near me
Product Description
High Pressure Electric/Diesel Air Booster/Air Compressor
Introductions:
Our products have complete varieties and specifications. From the compressor type, it is divided into mobile type, fixed type, vehicle-mounted type, skid-mounted type and so on. Compressed media include air, natural gas, liquefied petroleum gas, hydrogen, recycled gas, nitrogen, ammonia, propylene, biogas, coalbed methane, carbon dioxide, etc. From the cylinder lubrication method, it is divided into oil lubrication and oil-free lubrication. From the compression type, it is divided into reciprocating piston type and screw type. Products are widely used in metallurgical machinery manufacturing, urban construction, steel, national defense, coal, mining, geology, natural gas, petroleum, petrochemical, chemical, electric power, textile, biology, medicine, glass and other industries.
Main features:
1. The compressor is manufactured by air-cooling and water-cooling technology, with high reliability and long service life.
2. The compressor unit has a high degree of automation. The unit operation is controlled by a programmable controller PLC and is equipped with multiple protections.
3. Automatic shutdown protection, unloading restart, automatic drainage, and alarm for insufficient oil.
| Flow rate | ≤50 Nm³/min |
| Pressure | ≤40 MPa |
| Medium | air, nitrogen, carbon dioxide, natural gas |
| Control | PLC automatic control |
| Drive mode | electric motor, diesel engine |
| Cooling method | air cooling, water cooling, mixed cooling |
| Installation method | mobile type, fixed type, vehicle-mounted type, skid-mounted type |
Main Technical Parameters:
| NO. | Model | Rotating Speed (r/min) |
Intake Pressure (Mpa) |
Exhaust Pressure (Mpa) |
Exhaust Volume (Nm³/min) |
Dimension (L*W*H)mm | Drive Power/Shaft Power(KW) | Weight (T) | Remark |
| 1 | SF-10/150 | 1330 | Atmospheric Pressure | 15 | 10 | 5500*2000*2300 | 227/139 | 6 | Stationary Diesel Engine |
| 2 | SF-10/150 | 1330 | 15 | 10 | 7500*2300*2300 | 227/139 | 8 | Container Skid Mounted Diesel Engine | |
| 3 | SF-10/250 | 1330 | 25 | 10 | 5500*2000*2300 | 227/173 | 6 | Stationary Diesel Engine | |
| 4 | SF-10/250 | 1330 | 25 | 10 | 7500*2300*2300 | 227/173 | 8 | Container Skid Mounted Diesel Engine | |
| 5 | SF-10/250 | 1330 | 25 | 10 | 15710*2496*3900 | 227/173 | 21.98 | Vehicular | |
| 6 | WF-10/60 | 1000 | 6 | 10 | 6000*2200*2200 | 135/110 | 6 | Container Skid Mounted Diesel Engine | |
| 7 | W-10/350 | 980 | 35 | 10 | 15710*2496*3900 | 303/187 | 21.98 | Vehicular | |
| 8 | WF-0.9/3-120 | 980 | 0.3 | 12 | 0.9 | 5100*2000*2350 | 75/50 | 5.4 | Container Skid Mounted Diesel Engine |
| 9 | SF-1.2/24-150 | 1200 | 2.4 | 15 | 1.2 | 7500*2300*2415 | 303/195 | 8.6 | Container Skid Mounted Diesel Engine |
| 10 | W-0.86/17-350 | 1000 | 1.7 | 35 | 0.86 | 8500*2500*2300 | 277/151 | 12 | Container Skid Mounted Diesel Engine |
| 11 | W-1.25/11-350 | 980 | 1.1 | 35 | 1.25 | 8000*2500*2500 | 185/145.35 | 15 | Container Skidding Motor |
| 12 | LG.V-25/150 | Screw 2279 Piston 800 | Atmospheric Pressure | 15 | 25 | 7000*2420*2300 | 355 | 16 | Container Skidding Motor |
| Model | Flow | Pressure | Stages | Cooling Type | Rotating Speed | Power |
| m³/min | Mpa | r/min | ||||
| SVF-15/100 | 15 | 10 | 1+2 | Air Cooling | 1150 | Diesel series |
| SVF-18/100 | 18 | 10 | 1+2 | 1150 | ||
| SVF-20/120 | 20 | 12 | 1+2 | 1150 | ||
| LGW-15/100 | 15 | 10 | 1+2 | 1150 | ||
| LGW-15/150 | 15 | 15 | 1+3 | 1150 | ||
| LGW-15/200 | 15 | 20 | 1+3 | 1150 | ||
| LGW-20/100 | 20 | 10 | 1+2 | 1150 | ||
| LGW-20/150 | 20 | 15 | 1+2 | 1150 | ||
| LGS-24/150 | 24 | 15 | 1+2 | 1150 | ||
| LGS-30/150 | 30 | 15 | 1+2 | 1150 | ||
| LGW-25/150 | 25 | 15 | 1+2 | Water cooling | 980 | Electric tandem |
| LGV-25/250 | 25 | 25 | 1+3 | 740 | Diesel series | |
| LGW-12/275 | 12 | 27.5 | 1+3 | 980 | Electric tandem | |
| LGV-15/85 | 15 | 8.5 | 1+2 | 980 | ||
| LGV-15/250 | 15 | 25 | 1+3 | Air Cooling | 740 | |
| LGV-15/350 | 15 | 35 | 1+4 | Water cooling | 740 | |
| LGV-15/400 | 15 | 40 | 1+4 | 740 | ||
| LGV-12.5/400 | 12.5 | 40 | 1+4 | 740 | ||
| LGV-15/100 | 15 | 10 | 1+2 | 740 |
Application Industry:
1. Suitable for oilfield pressure test, line sweeping, gas lift, well drilling and other projects.
2. Used in air tightness testing, air tightness inspection, pressure test, strength inspection, air tightness verification and other fields of various high-pressure vessels or pressure vessels such as gas cylinders, steel cylinders, valves, pipelines, pressure meters, high-pressure boilers, etc. .
3. On-board pressure testing, pressurization, pipeline pressure testing, line sweeping, gas lift and other projects in oil exploration.
4. Sand blasting and rust removal, parts dust removal, high pressure phosphorus removal, anti-corrosion engineering, well drilling operations, mountain quarrying.
5. For hydropower station turbine control and high-voltage power grid air short-circuit device for arc extinguishing.
6. Provide air source for large and medium-sized bottle blowing machines.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Principle: | Reciprocating Compressor |
|---|---|
| Configuration: | Portable |
| Flow Rate: | ≤50 Nm³/Min |
| Pressure: | 0.1MPa-40MPa |
| Medium: | Air, Nitrogen, Carbon Dioxide, Natural Gas |
| Control: | PLC Automatic Control |
.webp)
How Do Gas Air Compressors Compare to Diesel Air Compressors?
When comparing gas air compressors to diesel air compressors, there are several factors to consider, including fuel efficiency, power output, cost, maintenance requirements, and environmental impact. Here’s a detailed explanation of how these two types of air compressors compare:
1. Fuel Efficiency:
Diesel air compressors are generally more fuel-efficient compared to gas air compressors. Diesel engines have higher energy density and better overall efficiency than gasoline engines. This means that diesel compressors can produce more work output per unit of fuel consumed, resulting in lower fuel costs and longer runtimes between refueling.
2. Power Output:
Diesel air compressors typically provide higher power output compared to gas air compressors. Diesel engines are known for their robustness and ability to generate higher torque, making them suitable for heavy-duty applications that require a larger volume of compressed air or higher operating pressures.
3. Cost:
In terms of upfront cost, gas air compressors are generally more affordable compared to diesel air compressors. Gasoline engines and components are typically less expensive than their diesel counterparts. However, it’s important to consider long-term costs, including fuel expenses and maintenance, which can vary depending on factors such as fuel prices and usage patterns.
4. Maintenance Requirements:
Diesel air compressors often require more regular maintenance compared to gas air compressors. This is because diesel engines have additional components such as fuel filters, water separators, and injector systems that need periodic servicing. Gas air compressors, on the other hand, may have simpler maintenance requirements, resulting in reduced maintenance costs and time.
5. Environmental Impact:
When it comes to environmental impact, diesel air compressors produce higher emissions compared to gas air compressors. Diesel engines emit more particulate matter, nitrogen oxides (NOx), and carbon dioxide (CO2) compared to gasoline engines. Gas air compressors, especially those powered by propane, tend to have lower emissions and are considered more environmentally friendly.
6. Portability and Mobility:
Gas air compressors are generally more portable and easier to move compared to diesel air compressors. Gasoline engines are typically lighter and more compact, making gas air compressors suitable for applications where mobility is essential, such as construction sites or remote locations.
It’s important to note that the specific requirements of the application and the availability of fuel sources also play a significant role in choosing between gas air compressors and diesel air compressors. Each type has its own advantages and considerations, and the choice should be based on factors such as the intended usage, operating conditions, budget, and environmental considerations.
In conclusion, gas air compressors are often more affordable, portable, and suitable for lighter applications, while diesel air compressors offer higher power output, fuel efficiency, and durability for heavy-duty operations. Consider the specific needs and factors mentioned above to determine the most appropriate choice for your particular application.
.webp)
Can Gas Air Compressors Be Used for Natural Gas Compression?
Gas air compressors are not typically used for natural gas compression. Here’s a detailed explanation:
1. Different Compressed Gases:
Gas air compressors are specifically designed to compress atmospheric air. They are not typically designed or suitable for compressing natural gas. Natural gas, which is primarily composed of methane, requires specialized compressors designed to handle the unique properties and characteristics of the gas.
2. Safety Considerations:
Natural gas compression involves handling a flammable and potentially hazardous substance. Compressing natural gas requires specialized equipment that meets stringent safety standards to prevent leaks, minimize the risk of ignition or explosion, and ensure the safe handling of the gas. Gas air compressors may not have the necessary safety features or materials to handle natural gas safely.
3. Equipment Compatibility:
Natural gas compression systems typically include components such as gas compressors, gas coolers, separators, and control systems that are specifically designed and engineered for the compression and handling of natural gas. These components are built to withstand the specific demands and conditions associated with natural gas compression, including the high pressures and potential presence of impurities.
4. Efficiency and Performance:
Compressing natural gas requires specialized compressors that can handle the high-pressure ratios and volumetric flow rates associated with the gas. Gas air compressors are generally not designed to achieve the same compression ratios and performance levels required for natural gas compression. Using gas air compressors for natural gas compression would likely result in inefficient operation and suboptimal performance.
5. Regulatory Compliance:
Compressing natural gas is subject to various regulations and standards to ensure safety, environmental protection, and compliance with industry guidelines. These regulations often dictate specific requirements for equipment, materials, and operating procedures in natural gas compression systems. Gas air compressors may not meet these regulatory requirements for natural gas compression.
6. Industry Standards and Practices:
The natural gas industry has well-established standards and best practices for equipment selection, installation, and operation in gas compression systems. These standards are based on the specific requirements and characteristics of natural gas. Gas air compressors do not align with these industry standards and practices, which are essential for safe and efficient natural gas compression.
In summary, gas air compressors are not suitable for natural gas compression. Natural gas compression requires specialized equipment designed to handle the unique properties and safety considerations associated with the gas. Compressors specifically engineered for natural gas compression offer the necessary performance, safety features, and regulatory compliance required for efficient and reliable operation in natural gas compression systems.
.webp)
Can Gas Air Compressors Be Used in Remote Locations?
Yes, gas air compressors are well-suited for use in remote locations where access to electricity may be limited or unavailable. Their portability and reliance on gas engines make them an ideal choice for providing a reliable source of compressed air in such environments. Here’s a detailed explanation of how gas air compressors can be used in remote locations:
1. Independence from Electrical Grid:
Gas air compressors do not require a direct connection to the electrical grid, unlike electric air compressors. This independence from the electrical grid allows gas air compressors to be used in remote locations, such as wilderness areas, remote job sites, or off-grid locations, where it may be impractical or cost-prohibitive to establish electrical infrastructure.
2. Mobility and Portability:
Gas air compressors are designed to be portable and easy to transport. They are often equipped with handles, wheels, or trailers, making them suitable for remote locations. The gas engine powering the compressor provides mobility, allowing the compressor to be moved to different areas within the remote location as needed.
3. Fuel Versatility:
Gas air compressors can be fueled by various types of combustible gases, including gasoline, diesel, natural gas, or propane. This fuel versatility ensures that gas air compressors can adapt to the available fuel sources in remote locations. For example, if gasoline or diesel is readily available, the gas air compressor can be fueled with these fuels. Similarly, if natural gas or propane is accessible, the compressor can be configured to run on these gases.
4. On-Site Power Generation:
In remote locations where electricity is limited, gas air compressors can serve as on-site power generators. They can power not only the compressor itself but also other equipment or tools that require electricity for operation. This versatility makes gas air compressors useful for a wide range of applications in remote locations, such as powering lights, tools, communication devices, or small appliances.
5. Off-Grid Operations:
Gas air compressors enable off-grid operations, allowing tasks and activities to be carried out in remote locations without relying on external power sources. This is particularly valuable in industries such as mining, oil and gas exploration, forestry, or construction, where operations may take place in remote and isolated areas. Gas air compressors provide the necessary compressed air for pneumatic tools, drilling equipment, and other machinery required for these operations.
6. Emergency Preparedness:
Gas air compressors are also beneficial for emergency preparedness in remote locations. In situations where natural disasters or emergencies disrupt the power supply, gas air compressors can provide a reliable source of compressed air for essential equipment and systems. They can power emergency lighting, communication devices, medical equipment, or backup generators, ensuring operational continuity in critical situations.
7. Adaptability to Challenging Environments:
Gas air compressors are designed to withstand various environmental conditions, including extreme temperatures, humidity, dust, and vibrations. This adaptability to challenging environments makes them suitable for use in remote locations, where environmental conditions may be harsh or unpredictable.
Overall, gas air compressors can be effectively used in remote locations due to their independence from the electrical grid, mobility, fuel versatility, on-site power generation capabilities, suitability for off-grid operations, emergency preparedness, and adaptability to challenging environments. These compressors provide a reliable source of compressed air, enabling a wide range of applications in remote settings.


editor by CX 2024-02-27
China Custom Skid Mounted Explosion-Proof Diaphragm Membrane Hydrogen H2 Gas Compressor for Filling Station supplier
Product Description
Company Profile
ZheZheJiang nshine Industrial Technology Co., Ltd., as a professional overseas sales team and sales service team, is committed to providing customers with piston compressor and diaphragm compressor solutions. The company adheres to the concept of one-stop service and provides customers with a complete set of air compressor equipment solutions.
Product Description
Our products mainly include 2 series: piston compressors and diaphragm compressors, covering more than 30 types of products. These products are widely used in fields such as hydrogen energy, semiconductors, chemicals, petrochemicals, and natural gas transportation. We have over 3000 industrial enterprise users, covering all aspects of the hydrogen energy industry chain, including hydrogen production, filling, and hydrogen refueling station compressors, and providing a complete set of gas compression equipment solutions. As an efficient, energy-saving, environmentally friendly, and reliable compressor type, diaphragm compressors have also achieved great success and have been widely used in various fields.
Product Description:
Piston compressors are a type of positive displacement compressor that are commonly used in the chemical industry for a variety of applications. These compressors work by using a piston and cylinder to compress gas or air, which creates pressure and allows it to be transported through pipelines or used in other processes.
Diaphragm compressor :according to the needs of the user, choose the right type of compressor to meet the needs of the user. The diaphragm of the metal diaphragm compressor completely separates the gas from the hydraulic oil system to ensure the purity of the gas and no pollution to the gas. At the same time, advanced manufacturing technology and accurate membrane cavity design technology are adopted to ensure the service life of the diaphragm compressor diaphragm. No pollution: the metal diaphragm group completely separates the process gas from the hydraulic oil and lubricating oil parts to ensure the gas purity.Our compressors can compress ammonia, propylene, nitrogen, oxygen, helium, hydrogen, hydrogen chloride, argon, hydrogen chloride, hydrogen sulfide, hydrogen bromide, ethylene, acetylene, etc. (Nitrogen diaphragm compressor, bottle filling compressor, oxygen diaphragm compressor)and especially fit for all kinds of toxic radioactive corrosive compressor
In the chemical industry, piston compressors are used for a variety of functions, including:
Gas compression – Piston compressors are used to compress natural gas, hydrogen, and other gases used in chemical processes. product-list-1.html product-list-1.html
Pneumatic conveying – Piston compressors are used to transport materials in a powdered or granular form through pipelines.
Refrigeration – Piston compressors are used in refrigeration systems to compress refrigerant gases, which are then used to cool industrial processes and equipment.
Process air compression – Piston compressors are used to compress air for use in chemical processes, such as in pneumatic equipment and air-powered tools.
Piston compressors are popular in the chemical industry because they are reliable, efficient, and can handle specific types of gases and air with ease. Additionally, they require minimal maintenance and can operate at high pressures, making them suitable for many applications
When choosing a piston compressor for use in the chemical industry, it is important to consider factors such as:
Type of gas or air being compressed – Different types of gases and air require different types of compression.
Required flow rate and pressure – The capacity and pressure capabilities of the compressor must meet the requirements of the application.
Environmental conditions – Factors such as temperature, humidity, and altitude can affect the performance of the compressor.
Maintenance requirements – The frequency and complexity of maintenance and servicing should be considered when selecting a compressor.
Overall, piston compressors are an important tool in the chemical industry, providing reliable and efficient compression for a variety of applications. Choosing the right compressor for the specific application is critical to ensuring optimal performance and efficiency.
Piston compressor model:
1. Single-stage piston compressor
Single-stage piston compressor is the simplest compressor, mainly composed of cylinder, piston, crankshaft, connecting rod, valve and other components. It has the advantages of simple structure, easy maintenance and low price, so it is widely used in low-pressure air compression, nitrogen and oxygen production and other occasions. Parameters such as air output volume, air outlet pressure, and rotational speed need to be considered when selecting models.
Common models include: W-1.8/5, W-3.6/5, W-4/5, W-6/5, etc.
2. Two-stage piston compressor
A two-stage piston compressor consists of 2 compressors. The first-stage compressor compresses the gas to a higher intermediate pressure, and then is cooled by the cooler and sent to the second-stage compressor to compress it again to the final pressure. Compared with single-stage piston compressors, two-stage piston compressors have higher outlet pressure, higher efficiency, and wider application range.
Common models include: W-1/3-2/3, W-2.5/5-2.5/5, W-3/6-3.6/6, etc.
3. High-pressure piston compressor
High-pressure piston compressors are mainly used to compress high-pressure gases, such as natural gas, hydrogen, helium, etc. It has a complex structure and needs to be equipped with auxiliary equipment such as gas coolers, gas inlet filters, pressure controllers, etc. It also has the advantages of high outlet pressure, low energy consumption, and smooth operation.
Common models include: W-3/20, W-6/30, W-9/30, etc.
Introduction to the meaning of the model number of diaphragm compressor:
For example: 1G3V-300/4-15 AND GV3-310/22-62
1G3V-300/4-15 each represents as follows:
“1” means double first-class product;
“G” indicates diaphragm compressor;
“3” indicates the 3rd series of the product manufacturer’s diaphragm compressor series, and does not indicate piston force; the larger the number, the greater the piston force.
“V” means V-shaped structure.
“3V” means there are main and auxiliary connecting rods, and the crankcase is split.
“300” indicates the amount of gas the compressor handles per hour under standard conditions;
“4” means the inlet pressure is 4kg/cm2 (ie 0.4MPa);
“15” means the exhaust pressure is 15kg/cm2 (ie 1.5MPa).
GV3-310/22-62 each represents as follows:
“G” indicates diaphragm compressor;
“V” means V-shaped structure.
“3” indicates the 3rd series of the product manufacturer’s diaphragm compressor series, and does not indicate piston force; the larger the number, the greater the piston force.
“V3” is another series, indicating a side-by-side structure of connecting rods and a one-piece crankcase.
Basic information:Piston compressor model parameters:
| Piston compressor model parameters | |||||||||
| Piston force | 800 | 500 | 320 | 250 | 160 | 100 | 65 | 45 | 30 |
| Types of compressed gas | Hydrogen, nitrogen, natural gas, ethylene, propylene, coal gas, hydrogen chloride, hydrogen fluoride, carbon dioxide, methyl chloride, carbon monoxide, acetylene ammonia, hydrogen monochloride, difluoromethane, tetrafluoroethylene, pentafluoroethylene, hexafluoroethylene, etc. | ||||||||
| discharge pressureMPa(G) | <=25 | <=30 | |||||||
| Compression levels | 1-4levels | 2-6levels | 1-3levels | ||||||
| Number of columns | 2–4 | 2–6 | 1–4 | ||||||
| Layout form/Type/Model | M/D | M/D | M/D | M/D | M/D | M/D/P | M/D/P | M/D/P | L/P |
| route(mm) | 280-360 | 240-320 | 180-240 | 200 | |||||
| Rotating speed(rpm) | 300-375 | 333-450 | 375-585 | 420-485 | |||||
| Maximum motor power(KW) | 5600 | 3600 | 3300 | 2700 | 1250 | 800 | 560 | 250 | 75 |
| skid mounted | non-skid mounted | skid mounted/non -skid mounted | |||||||
| Digital Analog Computing | yes | ||||||||
| systolic algorithm | yes | ||||||||
| test | According to the quality standard, chemical analysis, mechanical performance, flaw detection, hydrostatic test, airtight test and other inspections are carried out for each component | ||||||||
| Factory inspection | According to the quality standard, carry out no-load mechanical operation test | ||||||||
| Customer acceptance | Actual working conditions, 72-hour assessment and acceptance | ||||||||
| Application | Hydrogen energy, silicon, fluorine chemical industry, petrochemical industry, metallurgy, medicine, aerospace, nuclear power | ||||||||
Basic information:Diaphragm compressor model parameters
| Piston force | 250 | 160 | 110 | 80 | 60 | 45 | 35 | 45 | 10 |
| Types of compressed gas | Hydrogen, nitrogen, oxygen, helium, xenon, hydrogen chloride, hydrogen sulfide, nitrogen trifluoride, silicon tetrafluoride, silane | ||||||||
| Discharge pressureMPa(G) | <=100 | ||||||||
| Compression levels | 1-3levels | ||||||||
| Layout form/Type/Model | M/D | D/L | D/L/Z | V/Z | L/Z | L/Z | |||
| Route(mm) | 210 | 210/1/0 | 180 | 180 | 150 | 130 | 130 | 105 | 70 |
| Rotating speed(rpm) | 260 | 360-420 | |||||||
| Maximum motor power(KW) | 355 | 250 | 200 | 160 | 110 | 55 | 30 | 22 | 18.5 |
| Skid mounted | skid mounted | ||||||||
| Digital Analog Computing | yes | ||||||||
| Systolic algorithm | According to demand | ||||||||
| Test | According to the quality standard, chemical analysis, mechanical performance, flaw detection, hydrostatic test, airtight test and other inspections are carried out for each component | ||||||||
| Factory inspection | Carry out nitrogen or air full-load mechanical operation test according to quality requirements | ||||||||
| Customer acceptance | Actual working conditions, 72-hour assessment and acceptance | ||||||||
| Application | Hydrogen energy, silicon, fluorine chemical industry, petrochemical industry, metallurgy, medicine, aerospace, nuclear power | ||||||||
Detailed Photos
After Sales Service
We have an independent service operation and maintenance team, providing customers with various support and services, including technical support, debugging services, spare parts supply, renovation and upgrading, and major maintenance. We always adhere to the principle of customer-centrism, ensuring the safe and stable operation of customer equipment. Our service team is committed to providing reliable support for customers’ operations 24/7.
Training plan
1)Company training
Before the unit is delivered, that is during the unit assembly period, users will be provided with a one-week on-site training by the company. Provide local accommodation and transportation facilities, and provide free venues, teaching materials, equipment, tools, etc. required for training. The company training content is as follows:
The working principle, structure and technical performance of the unit.
Unit assembly and adjustment, unit testing.
Operation of the unit, remote/local operation, manual/automatic operation, daily operation and management, familiar with the structure of each system of the unit.
Routine maintenance and upkeep of the unit, and precautions for operation and maintenance.
Analysis and troubleshooting of common faults, and emergency handling methods.
2) On-site training
During the installation and trial operation of the unit, on-site training will be conducted to teach the principles, structure, operation, maintenance, troubleshooting of common faults and other knowledge of the unit, so as to further become familiar with the various systems of the unit, so that the purchaser can independently and correctly operate the unit. Operation, maintenance and management.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | 12 Month |
|---|---|
| Warranty: | 12 Month |
| Lubrication Style: | Lubricated |
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
Can Gas Air Compressors Be Used for Well Drilling?
Gas air compressors can be used for well drilling, and they are commonly employed in drilling operations. Here’s a detailed explanation:
1. Air Drilling Method:
Gas air compressors are often utilized in the air drilling method, also known as pneumatic drilling. In this drilling technique, compressed air is used to create a high-velocity airflow that carries the drill cuttings to the surface. The high-pressure air also aids in cooling the drill bit and providing additional force for efficient drilling.
2. Benefits of Gas Air Compressors:
Gas air compressors offer several advantages for well drilling:
- Portability: Gas air compressors can be easily transported to remote drilling sites, allowing for flexibility in well location.
- Power: Gas air compressors provide high-pressure air output, which is essential for effective drilling in various geological formations.
- Cost-Effectiveness: Gas air compressors can be more cost-effective compared to other drilling methods, as they eliminate the need for drilling mud and associated disposal costs.
- Environmental Considerations: Air drilling with gas compressors produces minimal waste and does not require the use of potentially harmful drilling fluids, making it an environmentally friendly option.
3. Compressor Selection:
When selecting a gas air compressor for well drilling, several factors should be considered:
- Pressure and Flow Requirements: Evaluate the pressure and flow requirements of the drilling operation to ensure that the gas air compressor can deliver the necessary air output.
- Compressor Size and Power: Choose a compressor with adequate size and power output to match the drilling demands. Factors such as borehole depth, drill bit type, and drilling speed will influence the compressor’s power requirements.
- Portability: Consider the portability features of the gas air compressor, such as its weight, dimensions, and mobility options, to facilitate transportation to drilling sites.
4. Safety Considerations:
It is essential to follow safety guidelines when using gas air compressors for well drilling. These may include proper ventilation to prevent the accumulation of exhaust fumes, adherence to equipment operating limits, and the use of personal protective equipment (PPE) for drilling personnel.
5. Other Considerations:
While gas air compressors are commonly used for well drilling, it is worth noting that the suitability of a gas air compressor for a specific drilling project depends on various factors such as geological conditions, well depth, and drilling objectives. It is recommended to consult with drilling experts and professionals to determine the most suitable drilling method and equipment for a particular project.
In summary, gas air compressors can be effectively used for well drilling, particularly in the air drilling method. They offer portability, power, cost-effectiveness, and environmental advantages. Proper selection, considering pressure and flow requirements, as well as safety precautions, is crucial to ensure successful and safe drilling operations.
.webp)
What Is the Role of Air Receivers in Gas Air Compressor Systems?
Air receivers play a crucial role in gas air compressor systems by serving as storage tanks for compressed air. Here’s a detailed explanation:
1. Storage and Stabilization:
The primary function of an air receiver is to store compressed air generated by the gas air compressor. As the compressor produces compressed air, the air receiver collects and stores it. This storage capacity helps meet fluctuating demand in compressed air usage, providing a buffer between the compressor and the system’s air consumption.
By storing compressed air, the air receiver helps stabilize the supply to the system, reducing pressure fluctuations and ensuring a consistent and reliable flow of compressed air. This is particularly important in applications where the demand for compressed air may vary or experience peaks and valleys.
2. Pressure Regulation:
Another role of the air receiver is to assist in pressure regulation within the gas air compressor system. As compressed air enters the receiver, the pressure inside increases. When the pressure reaches a predetermined upper limit, typically set by a pressure switch or regulator, the compressor stops supplying air, and the excess air is stored in the receiver.
Conversely, when the pressure in the system drops below a certain lower limit, the pressure switch or regulator signals the compressor to start, replenishing the compressed air in the receiver and maintaining the desired pressure level. This cycling of the compressor based on pressure levels helps regulate and control the overall system pressure.
3. Condensate Separation:
During the compression process, moisture or condensate can form in the compressed air due to the cooling effect. The air receiver acts as a reservoir that allows the condensate to settle at the bottom, away from the outlet. The receiver often includes a drain valve at the bottom to facilitate the removal of accumulated condensate, preventing it from reaching downstream equipment and causing potential damage or performance issues.
4. Energy Efficiency:
Air receivers contribute to energy efficiency in gas air compressor systems. They help optimize the operation of the compressor by reducing the occurrence of short-cycling, which refers to frequent on-off cycling of the compressor due to rapid pressure changes. Short-cycling can cause excessive wear on the compressor and reduce its overall efficiency.
The presence of an air receiver allows the compressor to operate in longer and more efficient cycles. The compressor runs until the receiver reaches the upper pressure limit, ensuring a more stable and energy-efficient operation.
5. Air Quality Improvement:
Depending on the design, air receivers can also aid in improving air quality in the compressed air system. They provide a space for the compressed air to cool down, allowing moisture and some contaminants to condense and separate from the air. This can be further enhanced with the use of additional filtration and drying equipment installed downstream of the receiver.
In summary, air receivers play a vital role in gas air compressor systems by providing storage capacity, stabilizing compressed air supply, regulating system pressure, separating condensate, improving energy efficiency, and contributing to air quality control. They are an integral component in ensuring the reliable and efficient operation of compressed air systems across various industries and applications.
.webp)
What Industries Commonly Use Gas Air Compressors?
Gas air compressors find applications in various industries where compressed air is required for powering tools, equipment, and systems. These compressors are valued for their portability, versatility, and ability to provide high-pressure air. Here’s a detailed explanation of the industries that commonly use gas air compressors:
1. Construction Industry:
The construction industry extensively utilizes gas air compressors for a wide range of tasks. Compressed air is used to power pneumatic tools such as jackhammers, nail guns, impact wrenches, and concrete breakers. Gas air compressors provide the necessary airflow and pressure to operate these tools efficiently, making them ideal for construction sites.
2. Mining Industry:
In the mining industry, gas air compressors play a vital role in various operations. Compressed air is used to power pneumatic tools for drilling, rock blasting, and excavation. It is also employed in ventilation systems, conveying systems, and pneumatic control devices in mines. Gas air compressors are valued for their durability and ability to operate in rugged and remote mining environments.
3. Oil and Gas Industry:
The oil and gas industry relies on gas air compressors for numerous applications. They are used for well drilling operations, powering pneumatic tools, and maintaining pressure in oil and gas pipelines. Gas air compressors are also utilized in natural gas processing plants, refineries, and petrochemical facilities for various pneumatic processes and equipment.
4. Manufacturing and Industrial Sector:
In the manufacturing and industrial sector, gas air compressors are extensively used in different applications. They provide compressed air for pneumatic tools, such as air-powered drills, sanders, grinders, and spray guns. Compressed air is also used in manufacturing processes such as material handling, assembly line operations, and pneumatic control systems.
5. Automotive Industry:
The automotive industry utilizes gas air compressors for a variety of tasks. Compressed air is employed in automotive assembly plants for pneumatic tools, paint spraying booths, and pneumatic control systems. Gas air compressors are also used in auto repair shops for powering air tools, tire inflation, and operating pneumatic lifts.
6. Agriculture and Farming:
Gas air compressors have applications in the agriculture and farming sector. They are used for tasks such as powering pneumatic tools for crop irrigation, operating pneumatic seeders or planters, and providing compressed air for farm maintenance and repair work. Portable gas air compressors are particularly useful in agricultural settings where electricity may not be readily available.
7. Food and Beverage Industry:
In the food and beverage industry, gas air compressors are employed for various pneumatic processes and equipment. They are used in food packaging operations, pneumatic conveying systems for ingredients and finished products, and air-powered mixing and blending processes. Gas air compressors in this industry are designed to meet strict hygiene and safety standards.
8. Pharmaceutical and Healthcare Sector:
The pharmaceutical and healthcare sector utilizes gas air compressors for critical applications. Compressed air is used in medical devices, dental equipment, laboratory instruments, and pharmaceutical manufacturing processes. Gas air compressors in this industry must adhere to stringent quality standards and maintain air purity.
These are just a few examples of the industries that commonly use gas air compressors. Other sectors, such as power generation, aerospace, marine, and chemical industries, also rely on gas air compressors for specific applications. The versatility and reliability of gas air compressors make them indispensable in numerous industries where compressed air is a vital resource.


editor by CX 2024-02-25
China supplier Skid Mounted No-Leakage Diaphragm Membrane Hydrogen Gas Production Compressor with high quality
Product Description
Company Profile
ZheZheJiang nshine Industrial Technology Co., Ltd., as a professional overseas sales team and sales service team, is committed to providing customers with piston compressor and diaphragm compressor solutions. The company adheres to the concept of one-stop service and provides customers with a complete set of air compressor equipment solutions.
Product Description
Our products mainly include 2 series: piston compressors and diaphragm compressors, covering more than 30 types of products. These products are widely used in fields such as hydrogen energy, semiconductors, chemicals, petrochemicals, and natural gas transportation. We have over 3000 industrial enterprise users, covering all aspects of the hydrogen energy industry chain, including hydrogen production, filling, and hydrogen refueling station compressors, and providing a complete set of gas compression equipment solutions. As an efficient, energy-saving, environmentally friendly, and reliable compressor type, diaphragm compressors have also achieved great success and have been widely used in various fields.
Product Description:
Piston compressors are a type of positive displacement compressor that are commonly used in the chemical industry for a variety of applications. These compressors work by using a piston and cylinder to compress gas or air, which creates pressure and allows it to be transported through pipelines or used in other processes.
Diaphragm compressor :according to the needs of the user, choose the right type of compressor to meet the needs of the user. The diaphragm of the metal diaphragm compressor completely separates the gas from the hydraulic oil system to ensure the purity of the gas and no pollution to the gas. At the same time, advanced manufacturing technology and accurate membrane cavity design technology are adopted to ensure the service life of the diaphragm compressor diaphragm. No pollution: the metal diaphragm group completely separates the process gas from the hydraulic oil and lubricating oil parts to ensure the gas purity.Our compressors can compress ammonia, propylene, nitrogen, oxygen, helium, hydrogen, hydrogen chloride, argon, hydrogen chloride, hydrogen sulfide, hydrogen bromide, ethylene, acetylene, etc. (Nitrogen diaphragm compressor, bottle filling compressor, oxygen diaphragm compressor)and especially fit for all kinds of toxic radioactive corrosive compressor
In the chemical industry, piston compressors are used for a variety of functions, including:
Gas compression – Piston compressors are used to compress natural gas, hydrogen, and other gases used in chemical processes. product-list-1.html product-list-1.html
Pneumatic conveying – Piston compressors are used to transport materials in a powdered or granular form through pipelines.
Refrigeration – Piston compressors are used in refrigeration systems to compress refrigerant gases, which are then used to cool industrial processes and equipment.
Process air compression – Piston compressors are used to compress air for use in chemical processes, such as in pneumatic equipment and air-powered tools.
Piston compressors are popular in the chemical industry because they are reliable, efficient, and can handle specific types of gases and air with ease. Additionally, they require minimal maintenance and can operate at high pressures, making them suitable for many applications
When choosing a piston compressor for use in the chemical industry, it is important to consider factors such as:
Type of gas or air being compressed – Different types of gases and air require different types of compression.
Required flow rate and pressure – The capacity and pressure capabilities of the compressor must meet the requirements of the application.
Environmental conditions – Factors such as temperature, humidity, and altitude can affect the performance of the compressor.
Maintenance requirements – The frequency and complexity of maintenance and servicing should be considered when selecting a compressor.
Overall, piston compressors are an important tool in the chemical industry, providing reliable and efficient compression for a variety of applications. Choosing the right compressor for the specific application is critical to ensuring optimal performance and efficiency.
Piston compressor model:
1. Single-stage piston compressor
Single-stage piston compressor is the simplest compressor, mainly composed of cylinder, piston, crankshaft, connecting rod, valve and other components. It has the advantages of simple structure, easy maintenance and low price, so it is widely used in low-pressure air compression, nitrogen and oxygen production and other occasions. Parameters such as air output volume, air outlet pressure, and rotational speed need to be considered when selecting models.
Common models include: W-1.8/5, W-3.6/5, W-4/5, W-6/5, etc.
2. Two-stage piston compressor
A two-stage piston compressor consists of 2 compressors. The first-stage compressor compresses the gas to a higher intermediate pressure, and then is cooled by the cooler and sent to the second-stage compressor to compress it again to the final pressure. Compared with single-stage piston compressors, two-stage piston compressors have higher outlet pressure, higher efficiency, and wider application range.
Common models include: W-1/3-2/3, W-2.5/5-2.5/5, W-3/6-3.6/6, etc.
3. High-pressure piston compressor
High-pressure piston compressors are mainly used to compress high-pressure gases, such as natural gas, hydrogen, helium, etc. It has a complex structure and needs to be equipped with auxiliary equipment such as gas coolers, gas inlet filters, pressure controllers, etc. It also has the advantages of high outlet pressure, low energy consumption, and smooth operation.
Common models include: W-3/20, W-6/30, W-9/30, etc.
Introduction to the meaning of the model number of diaphragm compressor:
For example: 1G3V-300/4-15 AND GV3-310/22-62
1G3V-300/4-15 each represents as follows:
“1” means double first-class product;
“G” indicates diaphragm compressor;
“3” indicates the 3rd series of the product manufacturer’s diaphragm compressor series, and does not indicate piston force; the larger the number, the greater the piston force.
“V” means V-shaped structure.
“3V” means there are main and auxiliary connecting rods, and the crankcase is split.
“300” indicates the amount of gas the compressor handles per hour under standard conditions;
“4” means the inlet pressure is 4kg/cm2 (ie 0.4MPa);
“15” means the exhaust pressure is 15kg/cm2 (ie 1.5MPa).
GV3-310/22-62 each represents as follows:
“G” indicates diaphragm compressor;
“V” means V-shaped structure.
“3” indicates the 3rd series of the product manufacturer’s diaphragm compressor series, and does not indicate piston force; the larger the number, the greater the piston force.
“V3” is another series, indicating a side-by-side structure of connecting rods and a one-piece crankcase.
Basic information:Piston compressor model parameters:
| Piston compressor model parameters | |||||||||
| Piston force | 800 | 500 | 320 | 250 | 160 | 100 | 65 | 45 | 30 |
| Types of compressed gas | Hydrogen, nitrogen, natural gas, ethylene, propylene, coal gas, hydrogen chloride, hydrogen fluoride, carbon dioxide, methyl chloride, carbon monoxide, acetylene ammonia, hydrogen monochloride, difluoromethane, tetrafluoroethylene, pentafluoroethylene, hexafluoroethylene, etc. | ||||||||
| discharge pressureMPa(G) | <=25 | <=30 | |||||||
| Compression levels | 1-4levels | 2-6levels | 1-3levels | ||||||
| Number of columns | 2–4 | 2–6 | 1–4 | ||||||
| Layout form/Type/Model | M/D | M/D | M/D | M/D | M/D | M/D/P | M/D/P | M/D/P | L/P |
| route(mm) | 280-360 | 240-320 | 180-240 | 200 | |||||
| Rotating speed(rpm) | 300-375 | 333-450 | 375-585 | 420-485 | |||||
| Maximum motor power(KW) | 5600 | 3600 | 3300 | 2700 | 1250 | 800 | 560 | 250 | 75 |
| skid mounted | non-skid mounted | skid mounted/non -skid mounted | |||||||
| Digital Analog Computing | yes | ||||||||
| systolic algorithm | yes | ||||||||
| test | According to the quality standard, chemical analysis, mechanical performance, flaw detection, hydrostatic test, airtight test and other inspections are carried out for each component | ||||||||
| Factory inspection | According to the quality standard, carry out no-load mechanical operation test | ||||||||
| Customer acceptance | Actual working conditions, 72-hour assessment and acceptance | ||||||||
| Application | Hydrogen energy, silicon, fluorine chemical industry, petrochemical industry, metallurgy, medicine, aerospace, nuclear power | ||||||||
Basic information:Diaphragm compressor model parameters
| Piston force | 250 | 160 | 110 | 80 | 60 | 45 | 35 | 45 | 10 |
| Types of compressed gas | Hydrogen, nitrogen, oxygen, helium, xenon, hydrogen chloride, hydrogen sulfide, nitrogen trifluoride, silicon tetrafluoride, silane | ||||||||
| Discharge pressureMPa(G) | <=100 | ||||||||
| Compression levels | 1-3levels | ||||||||
| Layout form/Type/Model | M/D | D/L | D/L/Z | V/Z | L/Z | L/Z | |||
| Route(mm) | 210 | 210/1/0 | 180 | 180 | 150 | 130 | 130 | 105 | 70 |
| Rotating speed(rpm) | 260 | 360-420 | |||||||
| Maximum motor power(KW) | 355 | 250 | 200 | 160 | 110 | 55 | 30 | 22 | 18.5 |
| Skid mounted | skid mounted | ||||||||
| Digital Analog Computing | yes | ||||||||
| Systolic algorithm | According to demand | ||||||||
| Test | According to the quality standard, chemical analysis, mechanical performance, flaw detection, hydrostatic test, airtight test and other inspections are carried out for each component | ||||||||
| Factory inspection | Carry out nitrogen or air full-load mechanical operation test according to quality requirements | ||||||||
| Customer acceptance | Actual working conditions, 72-hour assessment and acceptance | ||||||||
| Application | Hydrogen energy, silicon, fluorine chemical industry, petrochemical industry, metallurgy, medicine, aerospace, nuclear power | ||||||||
Basic information:hydrogen compressor model parameters
| Hydrogen gas production compressor | |||||
| parameter industry | hydrogen from natural gas | Hydrogen from coke oven gas | Chemical tail gas recovery | Fluorine alkali tail gas recovery | other |
| Suction pressure MPa(G) | 0-0.5 | 0-0.2 | 0-1.0 | 0-0.1 | |
| Discharge pressureMPa(G) | 1.0-3.0 | 0.8-2.3 | 1.5-3.0 | 0.8-2.5 | |
| Capacity Nm3/min | 5-50 | 10-200 | 10-200 | 8-100 | |
| Compression levels | 1-3 | 1-4 | 1-6 | 1-5 | 1-6 |
| Motor power(KW) | 30-2000 | ||||
| Skid mounted | skid mounted | ||||
| Digital Analog Computing | yes | ||||
| Systolic algorithm | yes | ||||
| Service Guarantee | Professional service team, 7X24 hours all day service | ||||
| Hydrogen filling compressor + hydrogen refueling station compressor | |||||
| parameter industry | 45Mpahydrogen refueling station | 90Mpa hydrogen refueling station | Hydrogen tank truck | Hydrogen flushed into the bottle | High pressure hydrogen delivery |
| Suction pressure MPa(G) | 3-20 | 10-30 | 0.8-3.0 | 0.1-30 | 0.8-3.0 |
| Discharge pressureMPa(G) | 45 | 90 | 20.0-22.20 | 15.0-20.0 | 5.2-20.0 |
| Capacity Nm3/min | 200-2000 | 100-1000 | 300-2000 | 10-800 | 100-1500 |
| Compression levels | 1-2 | 1-2 | 1-3 | 1-2 | 1-2 |
| Motor power(KW) | 30-200 | 30-185 | 75-315 | 3-160 | 22-200 |
| Skid mounted | skid mounted | ||||
| Digital Analog Computing | yes | ||||
| Finite Element Analysis | yes | ||||
| Service Guarantee | Professional service team, 7X24 hours all day service | ||||
Detailed Photos
After Sales Service
We have an independent service operation and maintenance team, providing customers with various support and services, including technical support, debugging services, spare parts supply, renovation and upgrading, and major maintenance. We always adhere to the principle of customer-centrism, ensuring the safe and stable operation of customer equipment. Our service team is committed to providing reliable support for customers’ operations 24/7.
Training plan
1)Company training
Before the unit is delivered, that is during the unit assembly period, users will be provided with a one-week on-site training by the company. Provide local accommodation and transportation facilities, and provide free venues, teaching materials, equipment, tools, etc. required for training. The company training content is as follows:
The working principle, structure and technical performance of the unit.
Unit assembly and adjustment, unit testing.
Operation of the unit, remote/local operation, manual/automatic operation, daily operation and management, familiar with the structure of each system of the unit.
Routine maintenance and upkeep of the unit, and precautions for operation and maintenance.
Analysis and troubleshooting of common faults, and emergency handling methods.
2) On-site training
During the installation and trial operation of the unit, on-site training will be conducted to teach the principles, structure, operation, maintenance, troubleshooting of common faults and other knowledge of the unit, so as to further become familiar with the various systems of the unit, so that the purchaser can independently and correctly operate the unit. Operation, maintenance and management.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | 12 Month |
|---|---|
| Warranty: | 12 Month |
| Lubrication Style: | Lubricated |
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
Can Gas Air Compressors Be Used for Well Drilling?
Gas air compressors can be used for well drilling, and they are commonly employed in drilling operations. Here’s a detailed explanation:
1. Air Drilling Method:
Gas air compressors are often utilized in the air drilling method, also known as pneumatic drilling. In this drilling technique, compressed air is used to create a high-velocity airflow that carries the drill cuttings to the surface. The high-pressure air also aids in cooling the drill bit and providing additional force for efficient drilling.
2. Benefits of Gas Air Compressors:
Gas air compressors offer several advantages for well drilling:
- Portability: Gas air compressors can be easily transported to remote drilling sites, allowing for flexibility in well location.
- Power: Gas air compressors provide high-pressure air output, which is essential for effective drilling in various geological formations.
- Cost-Effectiveness: Gas air compressors can be more cost-effective compared to other drilling methods, as they eliminate the need for drilling mud and associated disposal costs.
- Environmental Considerations: Air drilling with gas compressors produces minimal waste and does not require the use of potentially harmful drilling fluids, making it an environmentally friendly option.
3. Compressor Selection:
When selecting a gas air compressor for well drilling, several factors should be considered:
- Pressure and Flow Requirements: Evaluate the pressure and flow requirements of the drilling operation to ensure that the gas air compressor can deliver the necessary air output.
- Compressor Size and Power: Choose a compressor with adequate size and power output to match the drilling demands. Factors such as borehole depth, drill bit type, and drilling speed will influence the compressor’s power requirements.
- Portability: Consider the portability features of the gas air compressor, such as its weight, dimensions, and mobility options, to facilitate transportation to drilling sites.
4. Safety Considerations:
It is essential to follow safety guidelines when using gas air compressors for well drilling. These may include proper ventilation to prevent the accumulation of exhaust fumes, adherence to equipment operating limits, and the use of personal protective equipment (PPE) for drilling personnel.
5. Other Considerations:
While gas air compressors are commonly used for well drilling, it is worth noting that the suitability of a gas air compressor for a specific drilling project depends on various factors such as geological conditions, well depth, and drilling objectives. It is recommended to consult with drilling experts and professionals to determine the most suitable drilling method and equipment for a particular project.
In summary, gas air compressors can be effectively used for well drilling, particularly in the air drilling method. They offer portability, power, cost-effectiveness, and environmental advantages. Proper selection, considering pressure and flow requirements, as well as safety precautions, is crucial to ensure successful and safe drilling operations.
.webp)
How Do You Transport Gas Air Compressors to Different Job Sites?
Transporting gas air compressors to different job sites requires careful planning and consideration of various factors. Here’s a detailed explanation:
1. Equipment Size and Weight:
The size and weight of the gas air compressor are crucial factors to consider when planning transportation. Gas air compressors come in different sizes and configurations, ranging from portable units to larger, skid-mounted or trailer-mounted compressors. Assess the dimensions and weight of the compressor to determine the appropriate transportation method.
2. Transportation Modes:
Gas air compressors can be transported using different modes of transportation, depending on their size, weight, and distance to the job site:
- Truck or Trailer: Smaller gas air compressors can be loaded onto a truck bed or trailer for transportation. Ensure that the vehicle or trailer has the necessary capacity to accommodate the weight and dimensions of the compressor.
- Flatbed or Lowboy Trailer: Larger gas compressors or skid-mounted units may require transportation on a flatbed or lowboy trailer. These trailers are designed to carry heavy equipment and provide stability during transportation.
- Shipping Container: For long-distance transportation or international shipments, gas air compressors can be transported in shipping containers. The compressor must be properly secured and protected within the container to prevent any damage during transit.
3. Securing and Protection:
It is essential to secure the gas air compressor properly during transportation to prevent shifting or damage. Use appropriate tie-down straps, chains, or fasteners to secure the compressor to the transport vehicle or trailer. Protect the compressor from potential impacts, vibrations, and weather conditions by using suitable covers, padding, or weatherproof enclosures.
4. Permits and Regulations:
Depending on the size and weight of the gas air compressor, special permits or escorts may be required for transportation. Familiarize yourself with local, state, and federal regulations regarding oversize or overweight loads, and obtain the necessary permits to ensure compliance with transportation laws.
5. Route Planning:
Plan the transportation route carefully, considering factors such as road conditions, height and weight restrictions, bridges, tunnels, and any other potential obstacles. Identify alternative routes if needed, and communicate with transportation authorities or agencies to ensure a smooth and safe journey.
6. Equipment Inspection and Maintenance:
Prior to transportation, conduct a thorough inspection of the gas air compressor to ensure it is in proper working condition. Check for any leaks, damage, or loose components. Perform routine maintenance tasks, such as oil changes, filter replacements, and belt inspections, to minimize the risk of equipment failure during transportation.
In summary, transporting gas air compressors to different job sites requires considering factors such as equipment size and weight, choosing appropriate transportation modes, securing and protecting the compressor, obtaining necessary permits, planning the route, and conducting equipment inspection and maintenance. Careful planning and adherence to transportation regulations contribute to the safe and efficient transportation of gas air compressors.
.webp)
What Are the Primary Applications of Gas Air Compressors?
Gas air compressors have a wide range of applications across various industries and activities. These compressors, powered by gas engines, provide a portable and versatile source of compressed air. Here’s a detailed explanation of the primary applications of gas air compressors:
1. Construction Industry:
Gas air compressors are extensively used in the construction industry. They power a variety of pneumatic tools and equipment, such as jackhammers, nail guns, impact wrenches, and concrete breakers. The portable nature of gas air compressors makes them ideal for construction sites where electricity may not be readily available or practical to use.
2. Agriculture and Farming:
Gas air compressors find applications in the agricultural sector. They are used to operate air-powered machinery and tools, including pneumatic seeders, sprayers, and agricultural pumps. Gas air compressors provide the necessary power to carry out tasks such as crop seeding, irrigation, and pest control in agricultural settings.
3. Recreational Activities:
Gas air compressors are commonly utilized in recreational activities. They are used to inflate tires, sports balls, inflatable structures, and recreational equipment such as air mattresses, rafts, and inflatable toys. Gas air compressors provide a convenient and portable solution for inflating various recreational items in outdoor settings.
4. Mobile Service Operations:
Gas air compressors are employed in mobile service operations, such as mobile mechanics, tire service providers, and mobile equipment repair services. These compressors power air tools and equipment required for on-site repairs, maintenance, and servicing of vehicles, machinery, and equipment. The mobility of gas air compressors allows service providers to bring their tools and compressed air source directly to the location of the service requirement.
5. Remote Job Sites:
Gas air compressors are well-suited for remote job sites or locations without access to electricity. They are commonly used in industries such as mining, oil and gas exploration, and remote construction projects. Gas air compressors power pneumatic tools, machinery, and drilling equipment in these environments, providing a reliable source of compressed air for operational needs.
6. Emergency and Backup Power:
In emergency situations or during power outages, gas air compressors can serve as a backup power source. They can power essential equipment and systems that rely on compressed air, such as emergency lighting, communication devices, medical equipment, and backup generators. Gas air compressors provide a reliable alternative power solution when electrical power is unavailable or unreliable.
7. Sandblasting and Surface Preparation:
Gas air compressors are used in sandblasting and surface preparation applications. They provide the high-pressure air necessary for propelling abrasive media, such as sand or grit, to remove paint, rust, or other coatings from surfaces. Gas air compressors offer the power and portability required for sandblasting operations in various industries, including automotive, metal fabrication, and industrial maintenance.
8. Off-Road and Outdoor Equipment:
Gas air compressors are commonly integrated into off-road and outdoor equipment, such as off-road vehicles, utility trucks, and recreational vehicles. They power air-operated systems, including air suspension systems, air brakes, air lockers, and air horns. Gas air compressors provide the necessary compressed air for reliable and efficient operation of these systems in rugged and outdoor environments.
Overall, gas air compressors have diverse applications in construction, agriculture, recreational activities, mobile service operations, remote job sites, emergency power backup, sandblasting, and various off-road and outdoor equipment. Their portability, versatility, and reliable power supply make them indispensable tools in numerous industries and activities.


editor by CX 2024-02-23
China factory High Quality Natural Gas Compressor with Gas Recovery Function for CNG Wellhead lowes air compressor
Product Description
Company Profile
The company’s main products include desulfurization, dehydrocarbons, separation, compression, filling, storage and transportation equipment for natural gas extraction in oil and gas fields; complete sets of wellhead gas recovery equipment; complete sets of vented natural gas recovery equipment; complete sets of coalbed methane, shale gas and biogas development and utilization equipment Equipment; CNG filling station complete equipment; LNG complete equipment; BOG compressor; large-displacement screw-piston compound compressor; membrane nitrogen and adsorption nitrogen production complete equipment; in addition, hydrogen, oxygen, nitrogen, argon, carbon monoxide gas, carbon dioxide gas, coal gas, hydrogen sulfide gas, propylene gas, ethylene gas, methyl chloride gas, trifluoropropane gas, liquefied petroleum gas and other special gases, low-temperature gases and air compressors. Among them, the W and V series non-lubricated compressors produced by introducing advanced foreign technology have reached the international advanced level.
Product Description
Mixed hydrocarbon/light hydrocarbon/light oil recovery
In oilfield casing gas and natural gas wells, the gas composition is relatively complex. The main components are methane and ethane. It also contains heavy carbon components such as carbon three, carbon four, carbon 5 to carbon nine, and is accompanied by a small amount of hydrogen sulfide and water. . Among them, heavy carbon components below carbon 3 have high recycling value. Users can choose an economical and reasonable investment method according to their own gas volume and component ratio.
The mixed hydrocarbon, light hydrocarbon and light oil recovery device designed and produced by our company is specially designed for this situation. The device is basically divided into 4 units, gas purification unit, refrigeration unit, light hydrocarbon production unit and light hydrocarbon recovery unit. The specific process is to pre-cool the medium by pressurizing and throttling, and then cooling the gas through refrigerant circulation to cool the gas to an appropriate temperature. Under a certain pressure, the components below C2 in the gas component condense into liquid recovery. This process is currently the most mature heavy carbon component recovery process. With the international energy shortage, the recycling value of heavy carbon components is getting higher and higher.
It can also be equipped with a power generation unit and a dry gas recovery unit according to the user’s needs. The power generation unit is operated by a natural gas power supply device, which has low operating costs and low energy consumption. The dry gas recovery unit uses a compressor to compress dry gas (the main component is methane) to 25MPa and fully recycle it. This is a complete solution.
Device features: high integration, simple installation; small footprint, flexible and convenient; low investment, quick results; mature technology and high reliability.
Light oil recovery
When the gas volume is small, the investment benefit ratio is too low when using a mixed hydrocarbon or light hydrocarbon recovery device. At this time, a light oil recovery device can be used to recover and reuse heavy carbon components below carbon three. The recycled product is usually called light oil.
Product Parameters
| Type | Gas | Daily processing volumeNm3/d | Amount recoveredT/D | Remark |
| TKH-1 |
Oilfield associated gas, natural gas |
1000 | -180 | The amount of light hydrocarbon recovery obtained is different due to different gas contents. |
| TKH-2 | 2000 | -350 | ||
| TKH-3 | 3000 | -550 | ||
| TKH-4 | 4000 | -700 | ||
| TKH-5 | 5000 | -1 | ||
| TKH-10 | 10000 | -2 | ||
| TKH-20 | 20000 | -4 | ||
| TKH-30 | 30000 | -6 |
Detailed Photos
After Sales Service
In addition to the high-quality performance of our products, we also attach great importance to providing customers with comprehensive services. We have an independent service operation and maintenance team, providing customers with various support and services, including technical support, debugging services, spare parts supply, renovation and upgrading, and major maintenance. We always adhere to the principle of customer-centrism, ensuring the safe and stable operation of customer equipment. Our service team is committed to providing reliable support for customers’ operations 24/7.
Training plan
Technical training is divided into 2 parts: company training and on-site training.
1)Company training
Before the unit is delivered, that is during the unit assembly period, users will be provided with a one-week on-site training by the company. Provide local accommodation and transportation facilities, and provide free venues, teaching materials, equipment, tools, etc. required for training. The company training content is as follows:
The working principle, structure and technical performance of the unit.
Unit assembly and adjustment, unit testing.
Operation of the unit, remote/local operation, manual/automatic operation, daily operation and management, familiar with the structure of each system of the unit.
Routine maintenance and upkeep of the unit, and precautions for operation and maintenance.
Analysis and troubleshooting of common faults, and emergency handling methods.
2) On-site training
During the installation and trial operation of the unit, on-site training will be conducted to teach the principles, structure, operation, maintenance, troubleshooting of common faults and other knowledge of the unit, so as to further become familiar with the various systems of the unit, so that the purchaser can independently and correctly operate the unit. Operation, maintenance and management.
Packaging & Shipping
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | 12 Month |
|---|---|
| Warranty: | 12 Month |
| Lubrication Style: | Lubricated |
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
Can Gas Air Compressors Be Used in Cold Weather Conditions?
Gas air compressors are generally designed to operate in a wide range of environmental conditions, including cold weather. However, there are certain considerations and precautions to keep in mind when using gas air compressors in cold weather conditions. Here’s a detailed explanation:
1. Cold Start-Up:
In cold weather, starting a gas air compressor can be more challenging due to the low temperatures affecting the engine’s performance. It is important to follow the manufacturer’s recommendations for cold start procedures, which may include preheating the engine, using a cold weather starting aid, or ensuring the proper fuel mixture. These measures help facilitate smooth start-up and prevent potential damage to the engine.
2. Fuel Type:
Consider the type of fuel used in the gas air compressor. Some fuels, such as gasoline, can be more susceptible to cold weather issues like vapor lock or fuel line freezing. In extremely cold conditions, it may be necessary to use a fuel additive or switch to a fuel type that is better suited for cold weather operation, such as winter-grade gasoline or propane.
3. Lubrication:
Cold temperatures can affect the viscosity of the oil used in the compressor’s engine. It is important to use the recommended oil grade suitable for cold weather conditions. Thicker oil can become sluggish and impede proper lubrication, while oil that is too thin may not provide adequate protection. Consult the manufacturer’s guidelines for the appropriate oil viscosity range for cold weather operation.
4. Moisture Management:
In cold weather, moisture can condense more readily in the compressed air system. It is crucial to properly drain the moisture from the compressor tank and ensure the air lines are free from any accumulated moisture. Failure to manage moisture can lead to corrosion, freezing of air lines, and decreased performance.
5. Protection from Freezing:
In extremely cold conditions, it is important to protect the gas air compressor from freezing. This may involve using insulated covers or enclosures, providing heat sources in the compressor area, or storing the compressor in a temperature-controlled environment when not in use. Taking measures to prevent freezing helps maintain proper operation and prevents potential damage to the compressor components.
6. Monitoring Performance:
Regularly monitor the performance of the gas air compressor in cold weather conditions. Pay attention to any changes in operation, such as reduced air pressure, increased noise, or difficulties in starting. Promptly address any issues and consult the manufacturer or a qualified technician if necessary.
By considering these factors and taking appropriate precautions, gas air compressors can be effectively used in cold weather conditions. However, it is important to consult the specific guidelines provided by the manufacturer for your compressor model, as they may have additional recommendations or specifications for cold weather operation.
.webp)
How Do Gas Air Compressors Contribute to Energy Savings?
Gas air compressors can contribute to energy savings in several ways. Here’s a detailed explanation:
1. Efficient Power Source:
Gas air compressors are often powered by gasoline or diesel engines. Compared to electric compressors, gas-powered compressors can provide higher power output for a given size, resulting in more efficient compression of air. This efficiency can lead to energy savings, especially in applications where a significant amount of compressed air is required.
2. Reduced Electricity Consumption:
Gas air compressors, as standalone units that don’t rely on electrical power, can help reduce electricity consumption. In situations where the availability of electricity is limited or expensive, using gas air compressors can be a cost-effective alternative. By utilizing fuel-based power sources, gas air compressors can operate independently from the electrical grid and reduce dependence on electricity.
3. Demand-Sensitive Operation:
Gas air compressors can be designed to operate on demand, meaning they start and stop automatically based on the air requirements. This feature helps prevent unnecessary energy consumption during periods of low or no compressed air demand. By avoiding continuous operation, gas air compressors can optimize energy usage and contribute to energy savings.
4. Energy Recovery:
Some gas air compressors are equipped with energy recovery systems. These systems capture and utilize the heat generated during the compression process, which would otherwise be wasted. The recovered heat can be redirected and used for various purposes, such as space heating, water heating, or preheating compressed air. This energy recovery capability improves overall energy efficiency and reduces energy waste.
5. Proper Sizing and System Design:
Selecting the appropriate size and capacity of a gas air compressor is crucial for energy savings. Over-sizing a compressor can lead to excessive energy consumption, while under-sizing can result in inefficient operation and increased energy usage. Properly sizing the compressor based on the specific air demands ensures optimal efficiency and energy savings.
6. Regular Maintenance:
Maintaining gas air compressors in good working condition is essential for energy efficiency. Regular maintenance, including cleaning or replacing air filters, checking and repairing leaks, and ensuring proper lubrication, helps optimize compressor performance. Well-maintained compressors operate more efficiently, consume less energy, and contribute to energy savings.
7. System Optimization:
For larger compressed air systems that involve multiple compressors, implementing system optimization strategies can further enhance energy savings. This may include employing advanced control systems, such as variable speed drives or sequencers, to match compressed air supply with demand, minimizing unnecessary energy usage.
In summary, gas air compressors contribute to energy savings through their efficient power sources, reduced electricity consumption, demand-sensitive operation, energy recovery systems, proper sizing and system design, regular maintenance, and system optimization measures. By utilizing gas-powered compressors and implementing energy-efficient practices, businesses and industries can achieve significant energy savings in their compressed air systems.
.webp)
Can Gas Air Compressors Be Used in Remote Locations?
Yes, gas air compressors are well-suited for use in remote locations where access to electricity may be limited or unavailable. Their portability and reliance on gas engines make them an ideal choice for providing a reliable source of compressed air in such environments. Here’s a detailed explanation of how gas air compressors can be used in remote locations:
1. Independence from Electrical Grid:
Gas air compressors do not require a direct connection to the electrical grid, unlike electric air compressors. This independence from the electrical grid allows gas air compressors to be used in remote locations, such as wilderness areas, remote job sites, or off-grid locations, where it may be impractical or cost-prohibitive to establish electrical infrastructure.
2. Mobility and Portability:
Gas air compressors are designed to be portable and easy to transport. They are often equipped with handles, wheels, or trailers, making them suitable for remote locations. The gas engine powering the compressor provides mobility, allowing the compressor to be moved to different areas within the remote location as needed.
3. Fuel Versatility:
Gas air compressors can be fueled by various types of combustible gases, including gasoline, diesel, natural gas, or propane. This fuel versatility ensures that gas air compressors can adapt to the available fuel sources in remote locations. For example, if gasoline or diesel is readily available, the gas air compressor can be fueled with these fuels. Similarly, if natural gas or propane is accessible, the compressor can be configured to run on these gases.
4. On-Site Power Generation:
In remote locations where electricity is limited, gas air compressors can serve as on-site power generators. They can power not only the compressor itself but also other equipment or tools that require electricity for operation. This versatility makes gas air compressors useful for a wide range of applications in remote locations, such as powering lights, tools, communication devices, or small appliances.
5. Off-Grid Operations:
Gas air compressors enable off-grid operations, allowing tasks and activities to be carried out in remote locations without relying on external power sources. This is particularly valuable in industries such as mining, oil and gas exploration, forestry, or construction, where operations may take place in remote and isolated areas. Gas air compressors provide the necessary compressed air for pneumatic tools, drilling equipment, and other machinery required for these operations.
6. Emergency Preparedness:
Gas air compressors are also beneficial for emergency preparedness in remote locations. In situations where natural disasters or emergencies disrupt the power supply, gas air compressors can provide a reliable source of compressed air for essential equipment and systems. They can power emergency lighting, communication devices, medical equipment, or backup generators, ensuring operational continuity in critical situations.
7. Adaptability to Challenging Environments:
Gas air compressors are designed to withstand various environmental conditions, including extreme temperatures, humidity, dust, and vibrations. This adaptability to challenging environments makes them suitable for use in remote locations, where environmental conditions may be harsh or unpredictable.
Overall, gas air compressors can be effectively used in remote locations due to their independence from the electrical grid, mobility, fuel versatility, on-site power generation capabilities, suitability for off-grid operations, emergency preparedness, and adaptability to challenging environments. These compressors provide a reliable source of compressed air, enabling a wide range of applications in remote settings.


editor by CX 2024-02-21
China Standard Butane RS-2 Dimethyl Ether Methyl Chloride Piston Displacement Reciprocating Diaphragm Membrane Gas Booster Compressor arb air compressor
Product Description
Company Profile
·Over 30 years of industry accumulation, relocated to HangZhou, HangZhou in May 2571
·With over 30 product series including pistons, diaphragm compressors, etc
·Applied to hydrogen energy, photovoltaics, and semiconductors (polycrystalline silicon, organic silicon)
Subdivision of Process Gas Compressors in Fluorochemical, Nuclear, Petroleum, Petrochemical, and Other Industries
·Deeply cultivating the process gas compressor market with over 3000 industrial enterprise users
·The products cover hydrogen production, hydrogen filling, Hydrogen station compressors and other products, providing a full range of compressed gas solutions for the hydrogen energy industry
·The production capacity transfer of HangZhou’s new factory has been completed, with a total production capacity of 800 units per year and an estimated output of CNY 800 to 1 billion.
Product Parameters
Basic information:Piston compressor model parameters
| Piston compressor model parameters | |||||||||
| Piston force | 800 | 500 | 320 | 250 | 160 | 100 | 65 | 45 | 30 |
| Types of compressed gas | Hydrogen, nitrogen, natural gas, ethylene, propylene, coal gas, hydrogen chloride, hydrogen fluoride, carbon dioxide, methyl chloride, carbon monoxide, acetylene ammonia, hydrogen monochloride, difluoromethane, tetrafluoroethylene, pentafluoroethylene, hexafluoroethylene, etc. | ||||||||
| discharge pressureMPa(G) | <=25 | <=30 | |||||||
| Compression levels | 1-4levels | 2-6levels | 1-3levels | ||||||
| Number of columns | 2–4 | 2–6 | 1–4 | ||||||
| Layout form | M/D | M/D | M/D | M/D | M/D | M/D/P | M/D/P | M/D/P | L/P |
| route(mm) | 280-360 | 240-320 | 180-240 | 200 | |||||
| Rotating speed(rpm) | 300-375 | 333-450 | 375-585 | 420-485 | |||||
| Maximum motor power(KW) | 5600 | 3600 | 3300 | 2700 | 1250 | 800 | 560 | 250 | 75 |
| skid mounted | non-skid mounted | skid mounted/non -skid mounted | |||||||
| Digital Analog Computing | yes | ||||||||
| systolic algorithm | yes | ||||||||
| test | According to the quality standard, chemical analysis, mechanical performance, flaw detection, hydrostatic test, airtight test and other inspections are carried out for each component | ||||||||
| Factory inspection | According to the quality standard, carry out no-load mechanical operation test | ||||||||
| Customer acceptance | Actual working conditions, 72-hour assessment and acceptance | ||||||||
| Application | Hydrogen energy, silicon, fluorine chemical industry, petrochemical industry, metallurgy, medicine, aerospace, nuclear power | ||||||||
Product Description
Our products mainly include 2 series: piston compressors and diaphragm compressors, covering more than 30 types of products. These products are widely used in fields such as hydrogen energy, semiconductors, chemicals, petrochemicals, and natural gas transportation. We have over 3000 industrial enterprise users, covering all aspects of the hydrogen energy industry chain, including hydrogen production, filling, and hydrogen refueling station compressors, and providing a complete set of gas compression equipment solutions. As an efficient, energy-saving, environmentally friendly, and reliable compressor type, diaphragm compressors have also achieved great success and have been widely used in various fields.
Piston compressors are a type of positive displacement compressor that are commonly used in the chemical industry for a variety of applications. These compressors work by using a piston and cylinder to compress gas or air, which creates pressure and allows it to be transported through pipelines or used in other processes.
In the chemical industry, piston compressors are used for a variety of functions, including:
Gas compression – Piston compressors are used to compress natural gas, hydrogen, and other gases used in chemical processes. product-list-1.html product-list-1.html
Pneumatic conveying – Piston compressors are used to transport materials in a powdered or granular form through pipelines.
Refrigeration – Piston compressors are used in refrigeration systems to compress refrigerant gases, which are then used to cool industrial processes and equipment.
Process air compression – Piston compressors are used to compress air for use in chemical processes, such as in pneumatic equipment and air-powered tools.
Piston compressors are popular in the chemical industry because they are reliable, efficient, and can handle specific types of gases and air with ease. Additionally, they require minimal maintenance and can operate at high pressures, making them suitable for many applications
When choosing a piston compressor for use in the chemical industry, it is important to consider factors such as:
Type of gas or air being compressed – Different types of gases and air require different types of compression.
Required flow rate and pressure – The capacity and pressure capabilities of the compressor must meet the requirements of the application.
Environmental conditions – Factors such as temperature, humidity, and altitude can affect the performance of the compressor.
Maintenance requirements – The frequency and complexity of maintenance and servicing should be considered when selecting a compressor.
Overall, piston compressors are an important tool in the chemical industry, providing reliable and efficient compression for a variety of applications. Choosing the right compressor for the specific application is critical to ensuring optimal performance and efficiency.
Detailed Photos
After Sales Service
In addition to the high-quality performance of our products, we also attach great importance to providing customers with comprehensive services. We have an independent service operation and maintenance team, providing customers with various support and services, including technical support, debugging services, spare parts supply, renovation and upgrading, and major maintenance. We always adhere to the principle of customer-centrism, ensuring the safe and stable operation of customer equipment. Our service team is committed to providing reliable support for customers’ operations 24/7.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | 12 Month |
|---|---|
| Warranty: | 12 Month |
| Lubrication Style: | Oil-less |
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
Can Gas Air Compressors Be Used in Cold Weather Conditions?
Gas air compressors are generally designed to operate in a wide range of environmental conditions, including cold weather. However, there are certain considerations and precautions to keep in mind when using gas air compressors in cold weather conditions. Here’s a detailed explanation:
1. Cold Start-Up:
In cold weather, starting a gas air compressor can be more challenging due to the low temperatures affecting the engine’s performance. It is important to follow the manufacturer’s recommendations for cold start procedures, which may include preheating the engine, using a cold weather starting aid, or ensuring the proper fuel mixture. These measures help facilitate smooth start-up and prevent potential damage to the engine.
2. Fuel Type:
Consider the type of fuel used in the gas air compressor. Some fuels, such as gasoline, can be more susceptible to cold weather issues like vapor lock or fuel line freezing. In extremely cold conditions, it may be necessary to use a fuel additive or switch to a fuel type that is better suited for cold weather operation, such as winter-grade gasoline or propane.
3. Lubrication:
Cold temperatures can affect the viscosity of the oil used in the compressor’s engine. It is important to use the recommended oil grade suitable for cold weather conditions. Thicker oil can become sluggish and impede proper lubrication, while oil that is too thin may not provide adequate protection. Consult the manufacturer’s guidelines for the appropriate oil viscosity range for cold weather operation.
4. Moisture Management:
In cold weather, moisture can condense more readily in the compressed air system. It is crucial to properly drain the moisture from the compressor tank and ensure the air lines are free from any accumulated moisture. Failure to manage moisture can lead to corrosion, freezing of air lines, and decreased performance.
5. Protection from Freezing:
In extremely cold conditions, it is important to protect the gas air compressor from freezing. This may involve using insulated covers or enclosures, providing heat sources in the compressor area, or storing the compressor in a temperature-controlled environment when not in use. Taking measures to prevent freezing helps maintain proper operation and prevents potential damage to the compressor components.
6. Monitoring Performance:
Regularly monitor the performance of the gas air compressor in cold weather conditions. Pay attention to any changes in operation, such as reduced air pressure, increased noise, or difficulties in starting. Promptly address any issues and consult the manufacturer or a qualified technician if necessary.
By considering these factors and taking appropriate precautions, gas air compressors can be effectively used in cold weather conditions. However, it is important to consult the specific guidelines provided by the manufacturer for your compressor model, as they may have additional recommendations or specifications for cold weather operation.
.webp)
Can Gas Air Compressors Be Used for Pneumatic Tools?
Yes, gas air compressors can be used for pneumatic tools. Here’s a detailed explanation:
1. Versatile Power Source:
Gas air compressors, powered by gasoline or diesel engines, provide a portable and versatile power source for operating pneumatic tools. They eliminate the need for electrical power supply, making them suitable for remote locations or construction sites where electricity may not be readily available.
2. High Power Output:
Gas air compressors typically offer higher power output compared to electric compressors of similar size. This high power output enables gas compressors to deliver the necessary air pressure and volume required by pneumatic tools, ensuring optimal tool performance.
3. Mobility and Portability:
Gas air compressors are often designed with mobility and portability in mind. They are compact and equipped with wheels or handles, allowing for easy transportation to different job sites. This mobility is advantageous when using pneumatic tools in various locations or when working in confined spaces.
4. Continuous Operation:
Gas air compressors can provide continuous air supply for pneumatic tools without the need for frequent pauses or recharging. As long as there is an adequate fuel supply, gas compressors can operate for extended periods, allowing uninterrupted use of pneumatic tools for tasks such as drilling, nailing, sanding, or painting.
5. Suitable for High-Demand Applications:
Pneumatic tools used in heavy-duty applications often require a robust air supply to meet their performance requirements. Gas air compressors can generate higher air flow rates and maintain higher operating pressures, making them suitable for high-demand pneumatic tools like jackhammers, impact wrenches, or sandblasters.
6. Flexibility in Compressor Size:
Gas air compressors are available in various sizes and capacities, allowing users to choose the compressor that best matches the air demands of their pneumatic tools. From small portable compressors for light-duty tasks to larger industrial-grade compressors for heavy-duty applications, there is a wide range of options to suit different tool requirements.
7. Reduced Dependency on Electrical Infrastructure:
Using gas air compressors for pneumatic tools reduces reliance on electrical infrastructure. In situations where the electrical power supply is limited, unreliable, or expensive, gas compressors offer a viable alternative, ensuring consistent tool performance without concerns about power availability.
It’s important to note that gas air compressors emit exhaust gases during operation, so proper ventilation is necessary when using them in enclosed spaces to ensure the safety of workers.
In summary, gas air compressors can effectively power pneumatic tools, offering mobility, high power output, continuous operation, and suitability for various applications. They provide a reliable and portable solution for utilizing pneumatic tools in locations where electrical power supply may be limited or unavailable.
.webp)
Are There Different Types of Gas Air Compressors Available?
Yes, there are different types of gas air compressors available, each designed to suit specific applications and requirements. These different types vary in terms of design, power source, configuration, and intended use. Here’s a detailed explanation of the various types of gas air compressors:
1. Reciprocating Gas Air Compressors:
Reciprocating gas air compressors, also known as piston compressors, use a reciprocating motion of one or more pistons to compress the air. These compressors are commonly used for small to medium-scale applications and are available in both single-stage and two-stage configurations. Single-stage compressors compress the air in a single stroke, while two-stage compressors use an additional cylinder for further compression, resulting in higher pressures.
2. Rotary Screw Gas Air Compressors:
Rotary screw gas air compressors utilize two interlocking helical screws to compress the air. These compressors are known for their continuous and efficient operation, making them suitable for demanding industrial applications. They are often used in industries such as manufacturing, construction, and automotive where a constant supply of compressed air is required.
3. Rotary Vane Gas Air Compressors:
Rotary vane gas air compressors use a rotor with sliding vanes to compress the air. As the rotor rotates, the vanes slide in and out, creating compression chambers that compress the air. These compressors are compact, reliable, and often used for smaller-scale applications or in situations where space is limited.
4. Centrifugal Gas Air Compressors:
Centrifugal gas air compressors operate by accelerating the air using a high-speed impeller. The accelerated air is then redirected into a diffuser, which converts the velocity energy into pressure energy. These compressors are commonly used for large-scale applications requiring high volumes of compressed air, such as in power plants, refineries, or chemical processing industries.
5. Oil-Free Gas Air Compressors:
Oil-free gas air compressors are designed to provide clean, oil-free compressed air. They feature special sealing mechanisms and materials to prevent oil contamination in the compressed air. These compressors are commonly used in industries where oil-free air is essential, such as food and beverage processing, pharmaceuticals, electronics manufacturing, and painting applications.
6. Portable Gas Air Compressors:
Portable gas air compressors are specifically designed for mobility and ease of transportation. These compressors often feature wheels, handles, or trailers for convenient movement. They are commonly used in construction sites, remote job locations, outdoor events, or other situations where compressed air is needed at different locations.
7. High-Pressure Gas Air Compressors:
High-pressure gas air compressors are designed to generate compressed air at elevated pressures. These compressors are used in applications that require air pressure higher than the standard range, such as in diving operations, breathing air systems, or specialized industrial processes.
8. Biogas Air Compressors:
Biogas air compressors are specifically designed to compress biogas, which is generated from the decomposition of organic matter. These compressors are used in biogas production facilities, landfills, wastewater treatment plants, or agricultural operations where biogas is produced and utilized as an energy source.
These are just a few examples of the different types of gas air compressors available. Each type has its own advantages and is suitable for specific applications based on factors such as required airflow, pressure, mobility, oil-free operation, and environmental considerations. It’s important to choose the appropriate type of gas air compressor based on the specific needs of the application to ensure optimal performance and efficiency.


editor by CX 2024-02-20
China Professional 220V Hydrogen Gas Compressor 3MPa-35MPa Outlet for 1-20nm3/H Hydrogen Generator wholesaler
Product Description
Product Description
Hydrogen Gas Compressor
Product features :
1. Light structure: compact and portable design and the base comes with a roller, easy to carry and move, can easily meet the needs of field work.
2. Easy to operate: driven by electric motor, the pressurization process does not consume the drive gas. 3. Strong pressurizing capability:Two-stage piston booster technology is use, can easily meet the 35MPa supercharging requirements.
4. Long service life:our company’s unique oil-free piston long-life dynamic sealing technology, as well as clever thermal management design, to ensure its long life reliable work.
5. Low noise: Using adaptive transmission coordination and buffer design,
and precision machining and assembling technology, greatly reduce the operating noise. 6. Can be used for multiple types of gas nitrogen, air, hydrogen, helium, carbon dioxide etc.
7. Intelligent timing function: an automatic timer will let you know the maintenance period and service life of the equipment.
Specification
| Model | Inlet pressure | Outlet pressure | Compatible hydrogen generator | Flow rate | Power |
| Rubri-HGC0030 | 3MPa~15MPa | 3MPa~35MPa | ≤ 3Nm3/h | 260g/h@3MPa (679g/[email protected]) |
220V-50Hz-2KW |
| Rubri-HGC5710 | 3MPa~15MPa | 3MPa~35MPa | ≤ 20Nm3/h | 6kg/[email protected] (1.78kg/h@3MPa) |
380V-50HZ-11KW |
If you are interested in hydrogen compressor for larger hydrogen generator, please contact us.
Package
Company profile
Sinopower was established in 2011. We supply various products in the hydrogen energy industry chain, including but not limited to hydrogen production, hydrogen storage, hydrogen supply, electric maintenance and BOP parts, fuel cell system assemblies, fuel cell vehicles, etc.
We have an experienced professional technology research and development team, which can provide professional services from product selection and matching, system design, product customization and development and technical support. We work with CHINAMFG universities and scientific research institutions at home and abroad, such as the University of Science and Technology of China, the University of Auckland, HangZhou University, HangZhou University of Technology, Sun Yat-sen University, etc, The first hydrogen fuel cell forklift has been developed for the domestic leading forklift enterprise CHINAMFG Forklift.
At the same time, our stack, fuel cell system, hydrogen bicycle/scooter, hydrogen UAV and hydrogen production equipment are exported to dozens of countries and regions such as the United States, the Netherlands, Italy, Germany, South Korea, India and Malaysia.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Yes |
|---|---|
| Warranty: | 1 Year |
| Lubrication Style: | Lubricated |
| Samples: |
US$ 500/Piece
1 Piece(Min.Order) | Order Sample Small
|
|---|
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
What Is the Typical Lifespan of a Gas Air Compressor?
The typical lifespan of a gas air compressor can vary depending on several factors, including the quality of the compressor, its usage patterns, maintenance practices, and environmental conditions. However, with proper care and maintenance, a gas air compressor can last for many years. Here’s a detailed explanation of the factors that can affect the lifespan of a gas air compressor:
1. Quality of the Compressor:
The quality and construction of the gas air compressor play a significant role in determining its lifespan. Compressors made with high-quality materials, precision engineering, and robust components are generally more durable and can withstand heavy usage over an extended period.
2. Usage Patterns:
The usage patterns of the gas air compressor can impact its lifespan. If the compressor is used consistently and for extended periods, it may experience more wear and tear compared to compressors used intermittently or for lighter tasks. Heavy-duty applications, such as continuous operation with high-demand tools, can put more strain on the compressor and potentially reduce its lifespan.
3. Maintenance Practices:
Regular maintenance is crucial for extending the lifespan of a gas air compressor. Following the manufacturer’s recommended maintenance schedule, performing routine tasks like oil changes, filter cleaning/replacement, and inspection of components can help prevent issues and ensure optimal performance. Neglecting maintenance can lead to accelerated wear and potential breakdowns.
4. Environmental Conditions:
The operating environment can significantly impact the lifespan of a gas air compressor. Factors such as temperature extremes, humidity levels, presence of dust or debris, and exposure to corrosive substances can affect the compressor’s components and overall performance. Compressors used in harsh environments may require additional protection or specialized maintenance to mitigate these adverse conditions.
5. Proper Installation and Operation:
Proper installation and correct operation of the gas air compressor are essential for its longevity. Following the manufacturer’s guidelines for installation, ensuring proper ventilation, maintaining correct oil levels, and operating within the compressor’s specified capacity and pressure limits can help prevent excessive strain and premature wear.
Considering these factors, a well-maintained gas air compressor can typically last anywhere from 10 to 15 years or even longer. However, it’s important to note that this is a general estimate, and individual results may vary. Some compressors may experience shorter lifespans due to heavy usage, inadequate maintenance, or other factors, while others may last well beyond the expected lifespan with proper care and favorable conditions.
Ultimately, investing in a high-quality gas air compressor, adhering to recommended maintenance practices, and using it within its intended capabilities can help maximize its lifespan and ensure reliable performance for an extended period.
.webp)
Can Gas Air Compressors Be Used for Gas Line Maintenance?
Gas air compressors can be used for certain aspects of gas line maintenance, primarily for tasks that require compressed air. Here’s a detailed explanation:
1. Clearing Debris and Cleaning:
Gas air compressors can be utilized to clear debris and clean gas lines. Compressed air can be directed through the gas lines to dislodge and remove dirt, dust, rust particles, or other contaminants that may accumulate over time. This helps maintain the integrity and efficiency of the gas lines.
2. Pressure Testing:
Gas line maintenance often involves pressure testing to ensure the lines can withstand the required operating pressures. Gas air compressors can provide the necessary compressed air to pressurize the lines for testing purposes. By pressurizing the gas lines with compressed air, technicians can identify any leaks or weaknesses in the system.
3. Leak Detection:
Gas air compressors can also be used in conjunction with appropriate leak detection equipment to identify and locate gas leaks in the gas lines. Compressed air can be introduced into the lines, and the detection equipment can then identify any areas where the compressed air escapes, indicating a potential gas leak.
4. Valve and Equipment Maintenance:
Gas line maintenance may involve the inspection, maintenance, or replacement of valves and associated equipment. Compressed air can be used to clean and blow out debris from valves, purge lines, or assist in the disassembly and reassembly of components.
5. Pipe Drying:
Gas air compressors can aid in drying gas lines after maintenance or repairs. By blowing compressed air through the lines, any residual moisture can be removed, ensuring the gas lines are dry before being put back into service.
6. Precautions and Regulations:
When using gas air compressors for gas line maintenance, it is essential to follow safety precautions and adhere to relevant regulations. Gas line maintenance often involves working in hazardous environments, and proper training, equipment, and procedures must be followed to ensure the safety of personnel and the integrity of the gas system.
It is important to note that gas air compressors should not be used directly for pressurizing or transporting natural gas or other combustible gases. Gas line maintenance tasks involving gas air compressors primarily focus on using compressed air for specific maintenance and testing purposes, as outlined above.
In summary, gas air compressors can be useful for certain aspects of gas line maintenance, including clearing debris, pressure testing, leak detection, valve and equipment maintenance, and pipe drying. However, it is crucial to follow safety guidelines and regulations when working with gas lines and compressed air to ensure the safety and integrity of the gas system.
.webp)
What Is a Gas Air Compressor?
A gas air compressor is a type of air compressor that is powered by a gas engine instead of an electric motor. It uses a combustion engine, typically fueled by gasoline or diesel, to convert fuel energy into mechanical energy, which is then used to compress air. Here’s a detailed explanation of a gas air compressor:
1. Power Source:
A gas air compressor utilizes a gas engine as its power source. The engine can be fueled by gasoline, diesel, or other types of combustible gases, such as natural gas or propane. The combustion engine drives the compressor pump to draw in air and compress it to a higher pressure.
2. Portable and Versatile:
Gas air compressors are often designed to be portable and versatile. The gas engine provides mobility, allowing the compressor to be easily transported and used in different locations, including remote job sites or areas without access to electricity. This makes gas air compressors suitable for applications such as construction projects, outdoor activities, and mobile service operations.
3. Compressor Pump:
The compressor pump in a gas air compressor is responsible for drawing in air and compressing it. The pump can be of various types, including reciprocating, rotary screw, or centrifugal, depending on the specific design of the gas air compressor. The pump’s role is to increase the pressure of the incoming air, resulting in compressed air that can be used for various applications.
4. Pressure Regulation:
Gas air compressors typically feature pressure regulation mechanisms to control the output pressure of the compressed air. This allows users to adjust the pressure according to the requirements of the specific application. The pressure regulation system may include pressure gauges, regulators, and safety valves to ensure safe and reliable operation.
5. Applications:
Gas air compressors find applications in a wide range of industries and activities. They are commonly used in construction sites for powering pneumatic tools such as jackhammers, nail guns, and impact wrenches. Gas air compressors are also utilized in agriculture for operating air-powered machinery like sprayers and pneumatic seeders. Additionally, they are employed in recreational activities such as inflating tires, sports equipment, or inflatable structures.
6. Maintenance and Fuel Considerations:
Gas air compressors require regular maintenance, including engine servicing, oil changes, and filter replacements, to ensure optimal performance and longevity. The type of fuel used in the gas engine also needs to be considered. Gasoline-powered compressors are commonly used in smaller applications, while diesel-powered compressors are preferred for heavy-duty and continuous operation due to their higher fuel efficiency and durability.
Overall, a gas air compressor is an air compressor that is powered by a gas engine, offering mobility and versatility. It provides compressed air for various applications and is commonly used in construction, agriculture, and outdoor activities. Regular maintenance and fuel considerations are essential to ensure reliable operation and optimal performance.


editor by CX 2024-02-19
China Standard No Pollution High Pressure Piston Displacement Reciprocating Diaphragm Hydrogen Chloride Gas Compressor with Hot selling
Product Description
Company Profile
ZheZheJiang nshine Industrial Technology Co., Ltd., as a professional overseas sales team and sales service team, is committed to providing customers with piston compressor and diaphragm compressor solutions. The company adheres to the concept of one-stop service and provides customers with a complete set of air compressor equipment solutions.
Product Description
Our products mainly include 2 series: piston compressors and diaphragm compressors, covering more than 30 types of products. These products are widely used in fields such as hydrogen energy, semiconductors, chemicals, petrochemicals, and natural gas transportation. We have over 3000 industrial enterprise users, covering all aspects of the hydrogen energy industry chain, including hydrogen production, filling, and hydrogen refueling station compressors, and providing a complete set of gas compression equipment solutions. As an efficient, energy-saving, environmentally friendly, and reliable compressor type, diaphragm compressors have also achieved great success and have been widely used in various fields.
Product Description:
Piston compressors are a type of positive displacement compressor that are commonly used in the chemical industry for a variety of applications. These compressors work by using a piston and cylinder to compress gas or air, which creates pressure and allows it to be transported through pipelines or used in other processes.
Diaphragm compressor :according to the needs of the user, choose the right type of compressor to meet the needs of the user. The diaphragm of the metal diaphragm compressor completely separates the gas from the hydraulic oil system to ensure the purity of the gas and no pollution to the gas. At the same time, advanced manufacturing technology and accurate membrane cavity design technology are adopted to ensure the service life of the diaphragm compressor diaphragm. No pollution: the metal diaphragm group completely separates the process gas from the hydraulic oil and lubricating oil parts to ensure the gas purity.Our compressors can compress ammonia, propylene, nitrogen, oxygen, helium, hydrogen, hydrogen chloride, argon, hydrogen chloride, hydrogen sulfide, hydrogen bromide, ethylene, acetylene, etc. (Nitrogen diaphragm compressor, bottle filling compressor, oxygen diaphragm compressor)and especially fit for all kinds of toxic radioactive corrosive compressor
In the chemical industry, piston compressors are used for a variety of functions, including:
Gas compression – Piston compressors are used to compress natural gas, hydrogen, and other gases used in chemical processes. product-list-1.html product-list-1.html
Pneumatic conveying – Piston compressors are used to transport materials in a powdered or granular form through pipelines.
Refrigeration – Piston compressors are used in refrigeration systems to compress refrigerant gases, which are then used to cool industrial processes and equipment.
Process air compression – Piston compressors are used to compress air for use in chemical processes, such as in pneumatic equipment and air-powered tools.
Piston compressors are popular in the chemical industry because they are reliable, efficient, and can handle specific types of gases and air with ease. Additionally, they require minimal maintenance and can operate at high pressures, making them suitable for many applications
When choosing a piston compressor for use in the chemical industry, it is important to consider factors such as:
Type of gas or air being compressed – Different types of gases and air require different types of compression.
Required flow rate and pressure – The capacity and pressure capabilities of the compressor must meet the requirements of the application.
Environmental conditions – Factors such as temperature, humidity, and altitude can affect the performance of the compressor.
Maintenance requirements – The frequency and complexity of maintenance and servicing should be considered when selecting a compressor.
Overall, piston compressors are an important tool in the chemical industry, providing reliable and efficient compression for a variety of applications. Choosing the right compressor for the specific application is critical to ensuring optimal performance and efficiency.
Piston compressor model:
1. Single-stage piston compressor
Single-stage piston compressor is the simplest compressor, mainly composed of cylinder, piston, crankshaft, connecting rod, valve and other components. It has the advantages of simple structure, easy maintenance and low price, so it is widely used in low-pressure air compression, nitrogen and oxygen production and other occasions. Parameters such as air output volume, air outlet pressure, and rotational speed need to be considered when selecting models.
Common models include: W-1.8/5, W-3.6/5, W-4/5, W-6/5, etc.
2. Two-stage piston compressor
A two-stage piston compressor consists of 2 compressors. The first-stage compressor compresses the gas to a higher intermediate pressure, and then is cooled by the cooler and sent to the second-stage compressor to compress it again to the final pressure. Compared with single-stage piston compressors, two-stage piston compressors have higher outlet pressure, higher efficiency, and wider application range.
Common models include: W-1/3-2/3, W-2.5/5-2.5/5, W-3/6-3.6/6, etc.
3. High-pressure piston compressor
High-pressure piston compressors are mainly used to compress high-pressure gases, such as natural gas, hydrogen, helium, etc. It has a complex structure and needs to be equipped with auxiliary equipment such as gas coolers, gas inlet filters, pressure controllers, etc. It also has the advantages of high outlet pressure, low energy consumption, and smooth operation.
Common models include: W-3/20, W-6/30, W-9/30, etc.
Introduction to the meaning of the model number of diaphragm compressor:
For example: 1G3V-300/4-15 AND GV3-310/22-62
1G3V-300/4-15 each represents as follows:
“1” means double first-class product;
“G” indicates diaphragm compressor;
“3” indicates the 3rd series of the product manufacturer’s diaphragm compressor series, and does not indicate piston force; the larger the number, the greater the piston force.
“V” means V-shaped structure.
“3V” means there are main and auxiliary connecting rods, and the crankcase is split.
“300” indicates the amount of gas the compressor handles per hour under standard conditions;
“4” means the inlet pressure is 4kg/cm2 (ie 0.4MPa);
“15” means the exhaust pressure is 15kg/cm2 (ie 1.5MPa).
GV3-310/22-62 each represents as follows:
“G” indicates diaphragm compressor;
“V” means V-shaped structure.
“3” indicates the 3rd series of the product manufacturer’s diaphragm compressor series, and does not indicate piston force; the larger the number, the greater the piston force.
“V3” is another series, indicating a side-by-side structure of connecting rods and a one-piece crankcase.
Basic information:Piston compressor model parameters:
| Piston compressor model parameters | |||||||||
| Piston force | 800 | 500 | 320 | 250 | 160 | 100 | 65 | 45 | 30 |
| Types of compressed gas | Hydrogen, nitrogen, natural gas, ethylene, propylene, coal gas, hydrogen chloride, hydrogen fluoride, carbon dioxide, methyl chloride, carbon monoxide, acetylene ammonia, hydrogen monochloride, difluoromethane, tetrafluoroethylene, pentafluoroethylene, hexafluoroethylene, etc. | ||||||||
| discharge pressureMPa(G) | <=25 | <=30 | |||||||
| Compression levels | 1-4levels | 2-6levels | 1-3levels | ||||||
| Number of columns | 2–4 | 2–6 | 1–4 | ||||||
| Layout form/Type/Model | M/D | M/D | M/D | M/D | M/D | M/D/P | M/D/P | M/D/P | L/P |
| route(mm) | 280-360 | 240-320 | 180-240 | 200 | |||||
| Rotating speed(rpm) | 300-375 | 333-450 | 375-585 | 420-485 | |||||
| Maximum motor power(KW) | 5600 | 3600 | 3300 | 2700 | 1250 | 800 | 560 | 250 | 75 |
| skid mounted | non-skid mounted | skid mounted/non -skid mounted | |||||||
| Digital Analog Computing | yes | ||||||||
| systolic algorithm | yes | ||||||||
| test | According to the quality standard, chemical analysis, mechanical performance, flaw detection, hydrostatic test, airtight test and other inspections are carried out for each component | ||||||||
| Factory inspection | According to the quality standard, carry out no-load mechanical operation test | ||||||||
| Customer acceptance | Actual working conditions, 72-hour assessment and acceptance | ||||||||
| Application | Hydrogen energy, silicon, fluorine chemical industry, petrochemical industry, metallurgy, medicine, aerospace, nuclear power | ||||||||
Basic information:Diaphragm compressor model parameters
| Piston force | 250 | 160 | 110 | 80 | 60 | 45 | 35 | 45 | 10 |
| Types of compressed gas | Hydrogen, nitrogen, oxygen, helium, xenon, hydrogen chloride, hydrogen sulfide, nitrogen trifluoride, silicon tetrafluoride, silane | ||||||||
| Discharge pressureMPa(G) | <=100 | ||||||||
| Compression levels | 1-3levels | ||||||||
| Layout form/Type/Model | M/D | D/L | D/L/Z | V/Z | L/Z | L/Z | |||
| Route(mm) | 210 | 210/1/0 | 180 | 180 | 150 | 130 | 130 | 105 | 70 |
| Rotating speed(rpm) | 260 | 360-420 | |||||||
| Maximum motor power(KW) | 355 | 250 | 200 | 160 | 110 | 55 | 30 | 22 | 18.5 |
| Skid mounted | skid mounted | ||||||||
| Digital Analog Computing | yes | ||||||||
| Systolic algorithm | According to demand | ||||||||
| Test | According to the quality standard, chemical analysis, mechanical performance, flaw detection, hydrostatic test, airtight test and other inspections are carried out for each component | ||||||||
| Factory inspection | Carry out nitrogen or air full-load mechanical operation test according to quality requirements | ||||||||
| Customer acceptance | Actual working conditions, 72-hour assessment and acceptance | ||||||||
| Application | Hydrogen energy, silicon, fluorine chemical industry, petrochemical industry, metallurgy, medicine, aerospace, nuclear power | ||||||||
Detailed Photos
After Sales Service
We have an independent service operation and maintenance team, providing customers with various support and services, including technical support, debugging services, spare parts supply, renovation and upgrading, and major maintenance. We always adhere to the principle of customer-centrism, ensuring the safe and stable operation of customer equipment. Our service team is committed to providing reliable support for customers’ operations 24/7.
Training plan
1)Company training
Before the unit is delivered, that is during the unit assembly period, users will be provided with a one-week on-site training by the company. Provide local accommodation and transportation facilities, and provide free venues, teaching materials, equipment, tools, etc. required for training. The company training content is as follows:
The working principle, structure and technical performance of the unit.
Unit assembly and adjustment, unit testing.
Operation of the unit, remote/local operation, manual/automatic operation, daily operation and management, familiar with the structure of each system of the unit.
Routine maintenance and upkeep of the unit, and precautions for operation and maintenance.
Analysis and troubleshooting of common faults, and emergency handling methods.
2) On-site training
During the installation and trial operation of the unit, on-site training will be conducted to teach the principles, structure, operation, maintenance, troubleshooting of common faults and other knowledge of the unit, so as to further become familiar with the various systems of the unit, so that the purchaser can independently and correctly operate the unit. Operation, maintenance and management.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | 12 Month |
|---|---|
| Warranty: | 12 Month |
| Lubrication Style: | Lubricated |
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
How Do You Maintain a Gas Air Compressor?
Maintaining a gas air compressor is essential to ensure its optimal performance, longevity, and safe operation. Regular maintenance helps prevent breakdowns, extends the compressor’s lifespan, and promotes efficient operation. Here are some key maintenance steps for a gas air compressor:
1. Read the Manual:
Before performing any maintenance tasks, thoroughly read the manufacturer’s manual specific to your gas air compressor model. The manual provides important instructions and guidelines for maintenance procedures, including recommended intervals and specific maintenance requirements.
2. Check and Change the Oil:
Gas air compressors typically require regular oil changes to maintain proper lubrication and prevent excessive wear. Check the oil level regularly and change it according to the manufacturer’s recommendations. Use the recommended grade of oil suitable for your compressor model.
3. Inspect and Replace Air Filters:
Inspect the air filters regularly and clean or replace them as needed. Air filters prevent dust, debris, and contaminants from entering the compressor’s internal components. Clogged or dirty filters can restrict airflow and reduce performance. Follow the manufacturer’s guidelines for filter cleaning or replacement.
4. Drain Moisture from the Tank:
Gas air compressors accumulate moisture in the compressed air, which can lead to corrosion and damage to the tank and internal components. Drain the moisture from the tank regularly to prevent excessive moisture buildup. Refer to the manual for instructions on how to properly drain the moisture.
5. Check and Tighten Connections:
Regularly inspect all connections, fittings, and hoses for any signs of leaks or loose connections. Tighten any loose fittings and repair or replace damaged hoses or connectors. Leaks can lead to reduced performance and inefficiency.
6. Inspect Belts and Pulleys:
If your gas air compressor has belts and pulleys, inspect them for wear, tension, and proper alignment. Replace any worn or damaged belts and ensure proper tension to maintain optimal performance.
7. Clean the Exterior and Cooling Fins:
Keep the exterior of the gas air compressor clean from dirt, dust, and debris. Use a soft cloth or brush to clean the surfaces. Additionally, clean the cooling fins regularly to remove any accumulated debris that can impede airflow and cause overheating.
8. Schedule Professional Servicing:
While regular maintenance can be performed by the user, it is also important to schedule professional servicing at recommended intervals. Professional technicians can perform thorough inspections, conduct more complex maintenance tasks, and identify any potential issues that may require attention.
9. Follow Safety Precautions:
When performing maintenance tasks on a gas air compressor, always follow safety precautions outlined in the manual. This may include wearing protective gear, disconnecting the power source, and ensuring proper ventilation in confined spaces.
By following these maintenance steps and adhering to the manufacturer’s guidelines, you can keep your gas air compressor in optimal condition, prolong its lifespan, and ensure safe and efficient operation.
.webp)
What Is the Impact of Altitude on Gas Air Compressor Performance?
Altitude can have a significant impact on the performance of gas air compressors. Here’s a detailed explanation:
1. Decreased Air Density:
As altitude increases, the air density decreases. This reduction in air density affects the performance of gas air compressors, primarily because compressors rely on the intake of ambient air to generate compressed air. With lower air density at higher altitudes, the compressor’s ability to draw in a sufficient volume of air is reduced.
2. Reduced Compressor Output:
The decrease in air density directly affects the compressor’s output. Gas air compressors may experience a decrease in their maximum airflow and pressure capabilities at higher altitudes. This reduction in output can impact the compressor’s efficiency and its ability to deliver the required compressed air for various applications.
3. Increased Compressor Workload:
At higher altitudes, gas air compressors need to work harder to maintain the desired level of compressed air output. The reduced air density means the compressor must compress a larger volume of air to achieve the same pressure as it would at lower altitudes. This increased workload can lead to higher energy consumption, increased wear and tear on the compressor components, and potentially decreased overall performance and lifespan.
4. Engine Power Loss:
If the gas air compressor is powered by an internal combustion engine (such as gasoline or diesel), altitude can also impact the engine’s performance. As the air density decreases, the engine may experience a power loss due to reduced oxygen availability for combustion. This can result in reduced engine horsepower and torque, affecting the compressor’s ability to generate compressed air.
5. Considerations for Proper Sizing:
When selecting a gas air compressor for use at higher altitudes, it is crucial to consider the specific altitude conditions and adjust the compressor’s size and capacity accordingly. Choosing a compressor with a higher airflow and pressure rating than required at sea level can help compensate for the reduced performance at higher altitudes.
6. Maintenance and Adjustments:
Regular maintenance and adjustments are necessary to optimize the performance of gas air compressors operating at higher altitudes. This includes monitoring and adjusting the compressor’s intake systems, fuel-to-air ratio, and ignition timing to account for the reduced air density and maintain proper combustion efficiency.
In summary, altitude has a notable impact on the performance of gas air compressors. The decrease in air density at higher altitudes leads to reduced compressor output, increased compressor workload, potential engine power loss, and considerations for proper sizing and maintenance. Understanding these effects is crucial for selecting and operating gas air compressors effectively in various altitude conditions.
.webp)
What Safety Precautions Should Be Taken When Operating Gas Air Compressors?
Operating gas air compressors safely is essential to prevent accidents, injuries, and equipment damage. It’s important to follow proper safety precautions to ensure a safe working environment. Here’s a detailed explanation of the safety precautions that should be taken when operating gas air compressors:
1. Read and Follow the Manufacturer’s Instructions:
Before operating a gas air compressor, carefully read and understand the manufacturer’s instructions, user manual, and safety guidelines. Follow the recommended procedures, maintenance schedules, and any specific instructions provided by the manufacturer.
2. Provide Adequate Ventilation:
Gas air compressors generate exhaust fumes and heat during operation. Ensure that the operating area is well-ventilated to prevent the accumulation of exhaust gases, which can be harmful or even fatal in high concentrations. If operating indoors, use ventilation systems or open windows and doors to allow fresh air circulation.
3. Wear Personal Protective Equipment (PPE):
Wear appropriate personal protective equipment (PPE) when operating a gas air compressor. This may include safety glasses, hearing protection, gloves, and sturdy footwear. PPE helps protect against potential hazards such as flying debris, noise exposure, and hand injuries.
4. Perform Regular Maintenance:
Maintain the gas air compressor according to the manufacturer’s recommendations. Regularly inspect the compressor for any signs of wear, damage, or leaks. Keep the compressor clean and free from debris. Replace worn-out parts and components as needed to ensure safe and efficient operation.
5. Preventive Measures for Fuel Handling:
If the gas air compressor is powered by fuels such as gasoline, diesel, or propane, take appropriate precautions for fuel handling:
- Store fuel in approved containers and in well-ventilated areas away from ignition sources.
- Refuel the compressor in a well-ventilated outdoor area, following proper refueling procedures and avoiding spills.
- Handle fuel with caution, ensuring that there are no fuel leaks or spills near the compressor.
- Never smoke or use open flames near the compressor or fuel storage areas.
6. Use Proper Electrical Connections:
If the gas air compressor requires electrical power, follow these electrical safety precautions:
- Ensure that the electrical connections and wiring are properly grounded and in compliance with local electrical codes.
- Avoid using extension cords unless recommended by the manufacturer.
- Inspect electrical cords and plugs for damage before use.
- Do not overload electrical circuits or use improper voltage sources.
7. Secure the Compressor:
Ensure that the gas air compressor is securely positioned and stable during operation. Use appropriate mounting or anchoring methods, especially for portable compressors. This helps prevent tipping, vibrations, and movement that could lead to accidents or injuries.
8. Familiarize Yourself with Emergency Procedures:
Be familiar with emergency procedures and know how to shut off the compressor quickly in case of an emergency or malfunction. Have fire extinguishers readily available and know how to use them effectively. Develop an emergency action plan and communicate it to all personnel working with or around the compressor.
It’s crucial to prioritize safety when operating gas air compressors. By following these safety precautions and using common sense, you can minimize the risks associated with compressor operation and create a safer work environment for yourself and others.


editor by CX 2024-02-18
China Best Sales Auto AC Power Air Cooler Natural Gas Compressor for Refueling Station with high quality
Product Description
Product Description
Product function: This CNG compressor suitable for CNG refueling sub-stations with a daily gas output of 5000-7500Nm3, and can work in the process of refueling stations with gas storage wells or gas cylinder groups.
| Working temperature | -40ºC-40ºC |
| Suction pressure | 3-20Mpa |
| Discharge pressure | 25Mpa |
| Flow rate | 2300Nm³/H |
| Daily gas production rate | 23000-35000Nm³/D |
| Main motor power | 110kw |
| Noise | ≤75dBa |
| Size | 8690mm*2460mm*3900mm |
| Total power | 125KW |
| Average power consumption(Kw.h/Nm³) | 0.04 |
| Power source | AC POWER |
| Weight | ≈9T |
Advantages:
(1) Builtin gas storage well pressure gauges and detectors, reasonable adjustment of gas station inflation sequence and gas well pressure.
(2) Realize the staggered gas supply and reduce the energy consumption of gas filling stations.
(3) Built-in combustible gas detection alarm, strictly monitor gas leakage.
(4) With RS-485 communication interface, it can be used for network expansion.
(5) The unit comes with instrument air, without external control air.
Company Profile
HangZhou Qidakon Energy Equipment Co., Ltd was established in 2007 in HangZhou, ZheJiang Province, with a plant covering an area of 18,000 square meters. We are specializing in the R&D, production and sales of natural gas compressor series products, we adhere to the professional, fine, specialty, brand development of the road, to provide customers with the best overall technical solutions of high-tech enterprises. Professional production and manufacturing of natural gas compressor for CNG filling station and its service, professional production and manufacturing of natural gas compressor for oil and gas field natural gas extraction, recovery, gathering and transportation, storage and transportation and after-sales service, products and services have covered the CNG market all over the country and major domestic oil and gas fields, and radiation to Russia, India and other Belt and Road foreign markets.
Qidakon company has always been committed to technological innovation. Its core business team has more than 30 years of working experience in compressor design and manufacturing, and led the drafting of the industry standard for hydraulic natural gas compressors for automobile filling stations (JB/T11422-2013). Obtained nearly 100 national patents, won the national technology innovation fund, and the first in the industry through the whole machine safety explosion-proof certification, by the Ministry of Science and Technology technology innovation fund committee identified as the national technology innovation products, with its “safety, energy saving, environmental protection, investment province, simple structure and many other advantages, in more than 20 provinces (autonomous regions) used, Market share is among the best, its technical advancement, reliability, economy and industry leading position by the national attention.
Qidakon adheres to the enterprise mission of “gas melts everything, the way to secure the world”, adheres to the business philosophy of “customer first and sustainable development”, forms the core values of “loyalty and dedication, innovation and transcendence, truth-seeking and honest, fair sharing” and the enterprise spirit of “persistence, cooperation, gratitude, tolerance, dedication”, and is determined to become a global CHINAMFG brand of gas supercharging system.
Our Advantages
Professional R&D Team
About 100 technical patents
Industry standard setter
The national industry standard JB/T 11422-2013 setter, Hydraulic Natural Gas Compressor for Automobile Filling Station, drives the technical progress of the industry and leads the development direction of the industry.
Advanced production workshop and strict production process
Sapare parts area Welding
Assemble skiding Pre-factory commissioning
Strict quality control process and testing
Certification and Honor
Partner & Cases
CNG refueling station site
Indian partner
After Sales Service
Service Purpose: Cusomer’s Satisfaction Our Pursuit
Pre- Sale Services
Provide installation and commissioning training for customer operators according to customer requirements. At the same time, organize and register product information and set up customer files.
Services on sale
The prodessional technical service engineer guides the installation and commissioning on the side or on the line. Andwarning of the possible failure of the equipment.
After-Sales Service
Timely and rapid response ,24-hour on-line service, provide lifelong maintenance.
FAQ
1.How long is the lead-time of production?
90Days.
2. What is the configuration of the whole skid equipment?
According to different customer needs to do the country’s explosion-proof certification and industry certification.
3.Which sea ports are supported for shipment?
ZheJiang ,HangZhou or Other international ports in China.
4.What payment methods are supported?
T/T, LC, D/P D/D ect.
5.What technical support is available?
We provide basic parameters for customers’ reference before sales; conduct relevant certifications according to customers’ requirements during sales; be responsible for online debugging until successful operation after sales; arrange technicians to provide on-site guidance when necessary.
6.How long is the warranty period?
For a period of 12 months from the date of commissioning at end customer site or 15 months from the date of receipt by purchaser , whichever is earlier.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | 24 Hours |
|---|---|
| Warranty: | 12 Months |
| Lubrication Style: | Oil-free |
| Cooling System: | Air Cooling |
| Cylinder Arrangement: | Parallel Arrangement |
| Cylinder Position: | Vertical |
| Customization: |
Available
|
|
|---|
.webp)
Can Gas Air Compressors Be Used in Cold Weather Conditions?
Gas air compressors are generally designed to operate in a wide range of environmental conditions, including cold weather. However, there are certain considerations and precautions to keep in mind when using gas air compressors in cold weather conditions. Here’s a detailed explanation:
1. Cold Start-Up:
In cold weather, starting a gas air compressor can be more challenging due to the low temperatures affecting the engine’s performance. It is important to follow the manufacturer’s recommendations for cold start procedures, which may include preheating the engine, using a cold weather starting aid, or ensuring the proper fuel mixture. These measures help facilitate smooth start-up and prevent potential damage to the engine.
2. Fuel Type:
Consider the type of fuel used in the gas air compressor. Some fuels, such as gasoline, can be more susceptible to cold weather issues like vapor lock or fuel line freezing. In extremely cold conditions, it may be necessary to use a fuel additive or switch to a fuel type that is better suited for cold weather operation, such as winter-grade gasoline or propane.
3. Lubrication:
Cold temperatures can affect the viscosity of the oil used in the compressor’s engine. It is important to use the recommended oil grade suitable for cold weather conditions. Thicker oil can become sluggish and impede proper lubrication, while oil that is too thin may not provide adequate protection. Consult the manufacturer’s guidelines for the appropriate oil viscosity range for cold weather operation.
4. Moisture Management:
In cold weather, moisture can condense more readily in the compressed air system. It is crucial to properly drain the moisture from the compressor tank and ensure the air lines are free from any accumulated moisture. Failure to manage moisture can lead to corrosion, freezing of air lines, and decreased performance.
5. Protection from Freezing:
In extremely cold conditions, it is important to protect the gas air compressor from freezing. This may involve using insulated covers or enclosures, providing heat sources in the compressor area, or storing the compressor in a temperature-controlled environment when not in use. Taking measures to prevent freezing helps maintain proper operation and prevents potential damage to the compressor components.
6. Monitoring Performance:
Regularly monitor the performance of the gas air compressor in cold weather conditions. Pay attention to any changes in operation, such as reduced air pressure, increased noise, or difficulties in starting. Promptly address any issues and consult the manufacturer or a qualified technician if necessary.
By considering these factors and taking appropriate precautions, gas air compressors can be effectively used in cold weather conditions. However, it is important to consult the specific guidelines provided by the manufacturer for your compressor model, as they may have additional recommendations or specifications for cold weather operation.
.webp)
Can Gas Air Compressors Be Used in Agriculture?
Yes, gas air compressors can be used in various agricultural applications. Here’s a detailed explanation:
1. Pneumatic Tools and Equipment:
Gas air compressors can power a wide range of pneumatic tools and equipment used in agriculture. These tools include pneumatic drills, impact wrenches, nail guns, staplers, and pneumatic pumps. Gas air compressors provide the necessary compressed air to operate these tools, making various tasks more efficient and convenient on the farm.
2. Irrigation Systems:
Gas air compressors can be used to power irrigation systems in agriculture. They can supply compressed air to operate pneumatic valves, which control the flow of water in irrigation networks. Gas air compressors ensure reliable and efficient operation of irrigation systems, facilitating the distribution of water to crops in a controlled manner.
3. Grain Handling and Storage:
Air compressors play a vital role in grain handling and storage facilities. They are used to power aeration systems that provide airflow to grains stored in silos or bins. Aeration helps control the temperature and moisture levels, preventing spoilage and maintaining grain quality. Gas air compressors provide the airflow necessary for effective aeration in grain storage operations.
4. Cleaning and Maintenance:
In agriculture, gas air compressors are commonly used for cleaning and maintenance tasks. They can power air blowers or air guns to remove dust, debris, or chaff from machinery, equipment, or storage areas. Gas air compressors provide a high-pressure stream of compressed air, facilitating efficient cleaning and maintenance operations.
5. Livestock Operations:
Gas air compressors find applications in livestock operations as well. They can power pneumatic equipment used for animal care, such as pneumatic nail guns for building or repairing livestock enclosures, pneumatic pumps for water distribution, or pneumatic tools for general maintenance tasks.
6. Portable and Versatile:
Gas air compressors are often portable and can be easily transported around the farm, allowing flexibility in agricultural operations. Their versatility makes them suitable for various tasks, from powering tools and equipment in the field to providing compressed air for maintenance or cleaning in different farm locations.
7. Remote Locations:
In agricultural settings where access to electricity may be limited, gas air compressors offer a reliable alternative. They can be powered by gasoline or diesel engines, providing compressed air even in remote areas without electrical infrastructure.
8. Considerations:
When using gas air compressors in agriculture, it is essential to consider factors such as compressor size, capacity, and maintenance requirements. Selecting the right compressor based on the specific needs of the agricultural applications ensures optimal performance and efficiency.
In summary, gas air compressors have various applications in agriculture. They can power pneumatic tools and equipment, operate irrigation systems, facilitate grain handling and storage, assist in cleaning and maintenance tasks, support livestock operations, and offer portability and versatility. Gas air compressors contribute to increased efficiency, convenience, and productivity in agricultural operations.
.webp)
Can Gas Air Compressors Be Used in Remote Locations?
Yes, gas air compressors are well-suited for use in remote locations where access to electricity may be limited or unavailable. Their portability and reliance on gas engines make them an ideal choice for providing a reliable source of compressed air in such environments. Here’s a detailed explanation of how gas air compressors can be used in remote locations:
1. Independence from Electrical Grid:
Gas air compressors do not require a direct connection to the electrical grid, unlike electric air compressors. This independence from the electrical grid allows gas air compressors to be used in remote locations, such as wilderness areas, remote job sites, or off-grid locations, where it may be impractical or cost-prohibitive to establish electrical infrastructure.
2. Mobility and Portability:
Gas air compressors are designed to be portable and easy to transport. They are often equipped with handles, wheels, or trailers, making them suitable for remote locations. The gas engine powering the compressor provides mobility, allowing the compressor to be moved to different areas within the remote location as needed.
3. Fuel Versatility:
Gas air compressors can be fueled by various types of combustible gases, including gasoline, diesel, natural gas, or propane. This fuel versatility ensures that gas air compressors can adapt to the available fuel sources in remote locations. For example, if gasoline or diesel is readily available, the gas air compressor can be fueled with these fuels. Similarly, if natural gas or propane is accessible, the compressor can be configured to run on these gases.
4. On-Site Power Generation:
In remote locations where electricity is limited, gas air compressors can serve as on-site power generators. They can power not only the compressor itself but also other equipment or tools that require electricity for operation. This versatility makes gas air compressors useful for a wide range of applications in remote locations, such as powering lights, tools, communication devices, or small appliances.
5. Off-Grid Operations:
Gas air compressors enable off-grid operations, allowing tasks and activities to be carried out in remote locations without relying on external power sources. This is particularly valuable in industries such as mining, oil and gas exploration, forestry, or construction, where operations may take place in remote and isolated areas. Gas air compressors provide the necessary compressed air for pneumatic tools, drilling equipment, and other machinery required for these operations.
6. Emergency Preparedness:
Gas air compressors are also beneficial for emergency preparedness in remote locations. In situations where natural disasters or emergencies disrupt the power supply, gas air compressors can provide a reliable source of compressed air for essential equipment and systems. They can power emergency lighting, communication devices, medical equipment, or backup generators, ensuring operational continuity in critical situations.
7. Adaptability to Challenging Environments:
Gas air compressors are designed to withstand various environmental conditions, including extreme temperatures, humidity, dust, and vibrations. This adaptability to challenging environments makes them suitable for use in remote locations, where environmental conditions may be harsh or unpredictable.
Overall, gas air compressors can be effectively used in remote locations due to their independence from the electrical grid, mobility, fuel versatility, on-site power generation capabilities, suitability for off-grid operations, emergency preparedness, and adaptability to challenging environments. These compressors provide a reliable source of compressed air, enabling a wide range of applications in remote settings.


editor by CX 2024-02-16