Product Description
Product Description
Portable 2HP Copper wire 110/220V 8bar Oil Piston Single Cylinder Direct Driven Air Compressor
| Item No. | Tank | Cylinder | Air Delivery | KW/HP | RPM | BAR/PSI | Voltage/Hertz |
| JC-BM24 | 24L | Ø47*1 | 200LPM/7.1CFM | 1.5/2 | 2800 | 8/115 | 220V/50HZ |
| JC-BM25 | 25L | Ø47*1 | 200LPM/7.1CFM | 1.5/2 | 2800 | 8/115 | 220V/50HZ |
| JC-BM40 | 40L | Ø47*1 | 200LPM/7.1CFM | 2.2/3 | 2800 | 8/115 | 220V/50HZ |
| JC-BM50 | 50L | Ø47*1 | 200LPM/7.1CFM | 2.2/3 | 2800 | 8/115 | 220V/50HZ |
| JC-BM40 | 40L | Ø47*1 | 200LPM/7.1CFM | 1.5/2 | 2800 | 8/115 | 220V/50HZ |
| JC-BM50 | 50L | Ø47*1 | 200LPM/7.1CFM | 1.5/2 | 2800 | 8/115 | 220V/50HZ |
| JC-BM100 | 100L | Ø47*1 | 200LPM/7.1CFM | 2.2/3 | 2800 | 8/115 | 220V/50HZ |
| JC-BM24E | 24L | Ø47*1 | 200LPM/7.1CFM | 1.5/2 | 2800 | 8/115 | 220V/50HZ |
| JC-BM25E | 25L | Ø47*1 | 200LPM/7.1CFM | 1.5/2 | 2800 | 8/115 | 220V/50HZ |
| JC-BM40E | 40L | Ø47*1 | 200LPM/7.1CFM | 2.2/3 | 2800 | 8/115 | 220V/50HZ |
| JC-BM50E | 50L | Ø47*1 | 200LPM/7.1CFM | 2.2/3 | 2800 | 8/115 | 220V/50HZ |
| JC-BM40E | 40L | Ø47*1 | 200LPM/7.1CFM | 1.5/2 | 2800 | 8/115 | 220V/50HZ |
| JC-BM50E | 50L | Ø47*1 | 200LPM/7.1CFM | 1.5/2 | 2800 | 8/115 | 220V/50HZ |
Application
Company Profile
Certifications
FAQ
Why choose us?
Q:How about the supply capacity of your company?
A:15000-20000 per month.
Q:Do you accept customization? What is the minimum order quantity for customization?
A:Yes,we welcome to customized product,we can OEM & ODM,the MOQ is 1X40HQ.
Q:How about the delivery time?
A:Based on quantity,50pcs is about 10-15days,1*40HQ need 20-30days.
Q:Do you have the ability to process samples?
A:Yes.
Q:What’s warranty period?
A:One year,the seller is not responsible for replacing the accessories if the machine is damaged by improper use.
Q:How about the after-sales?
A:Lifetime service consultant, you can ask any questions about the machine.
Q:What certificates do you have?
A:CE,RoSH,EPA,CARB…if you need other cerification,we also can go to detect.
Q:Is there a discount for selling your brand?
A:Yes,of course.
Q:Is there any gift to send for introduce new customers?
A:Yes,of course.
|
Shipping Cost:
Estimated freight per unit. |
To be negotiated |
|---|
| After-sales Service: | Technical Support, Provide Spare Parts |
|---|---|
| Warranty: | 12 Months |
| Lubrication Style: | Oil |
| Samples: |
US$ 78/Piece
1 Piece(Min.Order) | Order Sample Copper wire,BM type 24L
|
|---|
| Customization: |
Available
|
|
|---|
.webp)
How are air compressors employed in the petrochemical industry?
Air compressors play a vital role in the petrochemical industry, where they are employed for various applications that require compressed air. The petrochemical industry encompasses the production of chemicals and products derived from petroleum and natural gas. Here’s an overview of how air compressors are utilized in the petrochemical industry:
1. Instrumentation and Control Systems:
Air compressors are used to power pneumatic instrumentation and control systems in petrochemical plants. These systems rely on compressed air to operate control valves, actuators, and other pneumatic devices that regulate processes such as flow control, pressure control, and temperature control. Compressed air provides a reliable and clean source of energy for these critical control mechanisms.
2. Pneumatic Tools and Equipment:
Petrochemical plants often utilize pneumatic tools and equipment for various tasks such as maintenance, repair, and construction activities. Air compressors supply the necessary compressed air to power these tools, including pneumatic drills, impact wrenches, grinders, sanders, and painting equipment. The versatility and convenience of compressed air make it an ideal energy source for a wide range of pneumatic tools used in the industry.
3. Process Air and Gas Supply:
Petrochemical processes often require a supply of compressed air and gases for specific applications. Air compressors are employed to generate compressed air for processes such as oxidation, combustion, and aeration. They may also be used to compress gases like nitrogen, hydrogen, and oxygen, which are utilized in various petrochemical reactions and treatment processes.
4. Cooling and Ventilation:
Petrochemical plants require adequate cooling and ventilation systems to maintain optimal operating conditions and ensure the safety of personnel. Air compressors are used to power cooling fans, blowers, and air circulation systems that help maintain the desired temperature, remove heat generated by equipment, and provide ventilation in critical areas.
5. Nitrogen Generation:
Nitrogen is widely used in the petrochemical industry for applications such as blanketing, purging, and inerting. Air compressors are utilized in nitrogen generation systems, where they compress atmospheric air, which is then passed through a nitrogen separation process to produce high-purity nitrogen gas. This nitrogen is used for various purposes, including preventing the formation of explosive mixtures, protecting sensitive equipment, and maintaining the integrity of stored products.
6. Instrument Air:
Instrument air is essential for operating pneumatic instruments, analyzers, and control devices throughout the petrochemical plant. Air compressors supply compressed air that is treated and conditioned to meet the stringent requirements of instrument air quality standards. Instrument air is used for tasks such as pneumatic conveying, pneumatic actuators, and calibration of instruments.
By employing air compressors in the petrochemical industry, operators can ensure reliable and efficient operation of pneumatic systems, power various tools and equipment, support critical processes, and maintain safe and controlled environments.
.webp)
What is the impact of altitude on air compressor performance?
The altitude at which an air compressor operates can have a significant impact on its performance. Here are the key factors affected by altitude:
1. Decreased Air Density:
As altitude increases, the air density decreases. This means there is less oxygen available per unit volume of air. Since air compressors rely on the intake of atmospheric air for compression, the reduced air density at higher altitudes can lead to a decrease in compressor performance.
2. Reduced Airflow:
The decrease in air density at higher altitudes results in reduced airflow. This can affect the cooling capacity of the compressor, as lower airflow hampers the dissipation of heat generated during compression. Inadequate cooling can lead to increased operating temperatures and potential overheating of the compressor.
3. Decreased Power Output:
Lower air density at higher altitudes also affects the power output of the compressor. The reduced oxygen content in the air can result in incomplete combustion, leading to decreased power generation. As a result, the compressor may deliver lower airflow and pressure than its rated capacity.
4. Extended Compression Cycle:
At higher altitudes, the air compressor needs to work harder to compress the thinner air. This can lead to an extended compression cycle, as the compressor may require more time to reach the desired pressure levels. The longer compression cycle can affect the overall efficiency and productivity of the compressor.
5. Pressure Adjustments:
When operating an air compressor at higher altitudes, it may be necessary to adjust the pressure settings. As the ambient air pressure decreases with altitude, the compressor’s pressure gauge may need to be recalibrated to maintain the desired pressure output. Failing to make these adjustments can result in underinflated tires, improper tool performance, or other issues.
6. Compressor Design:
Some air compressors are specifically designed to handle higher altitudes. These models may incorporate features such as larger intake filters, more robust cooling systems, and adjusted compression ratios to compensate for the reduced air density and maintain optimal performance.
7. Maintenance Considerations:
Operating an air compressor at higher altitudes may require additional maintenance and monitoring. It is important to regularly check and clean the intake filters to ensure proper airflow. Monitoring the compressor’s operating temperature and making any necessary adjustments or repairs is also crucial to prevent overheating and maintain efficient performance.
When using an air compressor at higher altitudes, it is advisable to consult the manufacturer’s guidelines and recommendations specific to altitude operations. Following these guidelines and considering the impact of altitude on air compressor performance will help ensure safe and efficient operation.
.webp)
What are the different types of air compressors?
There are several different types of air compressors, each with its own unique design and operating principle. Here’s an overview of the most commonly used types:
1. Reciprocating Air Compressors: Reciprocating air compressors, also known as piston compressors, use one or more pistons driven by a crankshaft to compress air. They operate by drawing air into a cylinder, compressing it with the piston’s up-and-down motion, and discharging the compressed air into a storage tank. Reciprocating compressors are known for their high pressure capabilities and are commonly used in industrial applications.
2. Rotary Screw Air Compressors: Rotary screw air compressors utilize two interlocking screws to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads. These compressors are known for their continuous duty cycle, high efficiency, and quiet operation. They are widely used in industrial, commercial, and automotive applications.
3. Centrifugal Air Compressors: Centrifugal air compressors rely on the principle of centrifugal force to compress air. They use a high-speed impeller to accelerate the incoming air and then convert the kinetic energy into pressure energy. Centrifugal compressors are commonly used in large-scale industrial applications that require high volumes of compressed air.
4. Rotary Vane Air Compressors: Rotary vane air compressors employ a rotor with sliding vanes that compress the air. As the rotor rotates, the vanes slide in and out of the rotor, creating compression chambers. Air is drawn in, trapped, and compressed as the vanes move. These compressors are compact, reliable, and suitable for small to medium-sized applications.
5. Axial Flow Air Compressors: Axial flow air compressors are primarily used in specialized applications such as aircraft engines and gas turbines. They utilize a series of rotating and stationary blades to compress air in a continuous flow. Axial flow compressors are known for their high flow rates and are designed for applications that require large volumes of compressed air.
6. Scroll Air Compressors: Scroll air compressors consist of two interlocking spirals or scrolls that compress the air. One spiral remains stationary while the other orbits around it, creating a series of expanding and contracting pockets that compress the air. Scroll compressors are compact, reliable, and commonly used in applications where low noise and oil-free air are required, such as medical and dental equipment.
These are just a few examples of the different types of air compressors available. Each type has its own advantages, capabilities, and ideal applications. The choice of air compressor depends on factors such as required pressure, flow rate, duty cycle, noise level, oil-free operation, and specific application requirements.


editor by CX 2023-09-30
China 12V electric tire inflator car motorcycle air tire pump with gauge light portable mini single cylinder air compressor manufacturer
Yr: Universal
Design: Universal
Voltage: 12V, Dc Electricity
Auto Fitment: Common
Max Force: one hundred and one-150Psi
Dimension: fifteen*16*6.5CM
Product Amount: SR02-571
Warranty: twelve Months
Perform: Energy Indicator, Tire Strain Keep an eye on, Digital Tire Inflator
Characteristic: Portable Car Tyre Air Pump
Accessories: 3* Nozzle Adapters
Material: Abs+PP+All Copper Motor
Coloration: Black
Application: Moveable
Usage: Verhicle Tyre Inflating Ball Inflating
Keyword: Automobile Air Inflator Compressor
Variety: Electric Air Compressor Inflator
Packaging Particulars: Carton Qty.(pcs) twenty fifteen*16*6.5CMG.W/N.W.(kg) 15/14Carton Dimensions(cm) forty four.5*32*33.five
Reductions
Dc Electricity 12v 300PSI Transportable Electrical Car Tire Pump Mini Air Pump Compressor Kit Multifunction Air Compressor Auto Components
| Merchandise title | Air compressor for car tires dc 12v dial electrical tire inflator pump mini 150psi automobile air compressor tires inflators |
| Product No. | SR02–571 |
| Software | Car tire & Bucket Elevator Roller Chain 2060 Sprocket Truck tire & Bicycle tire & Motorbike tire & Ball & Coupling Producer adaptable pin coupling with brake wheel Substantial Performance Manufacturing unit Value forty five#metal electrical power transmission Balloon |
| Generate Size | 13.7×7.2×12.2cm |
| Rated recent | 10A |
| Diameter of cylinder | 16 MM |
| Max pressure | 250 PSI |
| Out Place | 15 L/MIN @0PSI |
| Time of continuous work | 20 Minutes |
| Air hose duration | 45 cm knitted rubber air hose |
| Energy cord | 3 CZPT with cigarette lighter plug |
| Components | 2 Nozzle adapters and 1 sports needle |
| OEM/ODM | As costumer’s requirements |
| Direct time | 15-35 days |
| Samples | Free for available ones |
| Payment | Alibaba trade assurance,Paypal,T/T, Motor Controller M833 Screw Shaft Geared Motor 1RPM 25kg.cm Worm Gearbox Reduction Equipment Motor with Metal Turbo DC6V 12V 24V 5w ect. |
Detailed Images
Business Info
Certifications
Shipping&Payment
Speak to us

How to Repair and Maintain an Air Compressor
A compressor is a device used to move air from one place to another. Air enters the air compressor through the intake valve. Inside the compressor, the vanes on the inner rotor rotate within an eccentric cavity. The self-adjusting length arm divides the space into multiple cavities of different sizes. As the rotor rotates, air fills the cavity. As air flows around the cavity, it builds pressure and is squeezed out of the compressor output.
Positive displacement
Positive displacement air compressors use reciprocating pistons to compress air. Gas is drawn in during the suction stroke and compressed by moving the piston in the opposite direction. It then discharges the compressed air by moving it in the opposite direction. This type of air compressor is most commonly found in automobiles, refrigerators, and other applications that require high pressure. However, it is not as efficient as a centrifugal compressor.
Most modern air compressors use positive displacement. Positive displacement models capture a volume of air in the compression chamber and distribute it when the pump is operating at maximum capacity. They are more economical than their negative displacement counterparts. Reciprocating screw air compressors are the most common positive displacement compressors. The reciprocating screw air compressor adopts a water jacket around the cylinder and is often used in processes such as oil drilling.
A bicycle pump is an example of positive displacement compression. Air is drawn into the cylinder and compressed by the moving piston. A piston compressor works on the same principle, but it uses a rotating crankshaft or connecting rod to complete the movement of the pistons. There are two types of positive displacement compressors: single-acting and double-acting. Both types work on the same principle, both are positive displacement compressors. The difference between the two types is the pressure ratio.
In air compression, positive displacement compression reduces the volume of the fluid and reduces its viscosity. This results in higher pressure ratios and is used in centrifugal, axial, and scroll compressors. Positive displacement is a common feature of most air compressors. Positive displacement compressors offer the same benefits and are more energy-efficient when applied to oil-free and gas applications. This type of compression is usually the best choice for low-pressure applications.
oil free
If you’re looking for an air compressor for your business, consider an oil-free air compressor. These models offer cleaner, quieter operation than traditional air compressors and require less maintenance. They also meet ISO Class 0 or Class 1 air purity requirements. Oil-free air compressors are also quieter, with fewer moving parts and less noise. These advantages make oil-free air compressors an ideal solution for many commercial applications.
Air purity is critical in many industries. Even the tiniest drop of oil can damage production equipment or damage products. The best way to find an oil-free air compressor for your business is to consider the process and end product. As air quality improves, more and more businesses are turning to oil-free compressors. Some of the advantages and disadvantages of these air compressors are:
When choosing an oil-free air compressor, it is important to understand the terminology used in the industry. Knowing these terms will make it easier for you to choose the right compressor for your needs. ACTFM, or actual cubic feet per minute, is an industry term for measuring the amount of air pumped in one minute under rated conditions. Although a simple number, it can be very useful in determining which type of air compressor is best for your application.
The ISO 8573-1 international standard defines air quality and provides air purity classifications. The strictest classification is air purity class 0. Many manufacturers claim that oil-free air compressors meet this standard. However, a class 0 oil-free air compressor does not necessarily mean that the air is free of contaminants. In fact, Class 0 is the benchmark for air purity. While zero air quality is the highest level, that doesn’t mean it’s completely oil-free.
double acting
A double-acting air compressor is a device that uses compressed air to generate electricity. Its working principle is based on piston and connecting rod. The connecting rod connects the crankshaft to the piston through pins and caps. The piston moves as the piston moves. Rods are usually made of forged carbon steel. In terms of service and maintenance, double-acting compressors require regular vise maintenance and proper cleaning.
The displacement of the compressor is a measure of the displacement that the piston can produce in a certain period of time. Displacement is usually expressed in actual cubic feet per minute. The exact calculation depends on the type of cylinder and the configuration of the compressor. Single-acting cylinders can have head-end or crank-end displacement, both of which can be measured using the displacement equation. A double-acting air compressor will use this equation. 4 and 6 calculate the displacement.
Double-acting air compressors have multiple cylinders and are made of cast iron. They are water-cooled and have a mechanical connection between the piston and connecting rod. A double-acting compressor compresses air twice per revolution of the motor. One cylinder moves up, while the other cylinder moves down. The piston moves down, allowing air to enter through valve #1. During the operation of the compressor, the temperature of the air and gas increases.
Double-acting air compressors typically have high pressure and are considered workhorses. Double-acting compressors also feature intercooling and double compression. As a result, these machines tend to last longer than single-acting compressors. Its low speed and dual compression make it a workhorse in the compressor industry. Double-acting air compressors are workhorses and versatile devices.
fuel tank pressure switch
You can adjust the pressure in the air compressor tank by adjusting the differential pressure. You can turn the mainspring clockwise or counterclockwise to increase or decrease the pressure. This valve will open when the pressure is low enough to start the compressor. If the pressure is too low, the valve should be closed. The cut-in and cut-out pressures should be set to appropriate values. After adjusting the tank pressure, check the hysteresis of the tank pressure switch and set the desired shutoff pressure.
If the pressure in the tank falls below the cut-in level, the tank pressure switch must be replaced. You can test the switch with a multimeter. Make sure the switch is not damaged. If you can’t find the switch, you can look at the other sections. If you find any damaged or missing parts, you should replace them. Otherwise, it may be time to check the tank pressure switch. You may need to disassemble the compressor and remove the switch.
The fuel tank pressure switch is an important part of the air compressor. It keeps you informed of the amount of air delivered by the compressor. If your tank or tank is damaged, your readings will be wrong. If the pressure switch is damaged, it will not function properly and result in incorrect readings. Fortunately, there are some easy ways to fix this. To prevent this from happening, keep the tank pressure switch in good condition.
When the air pressure in the tank drops to the cut-in pressure setting, the switch allows power to flow through it. This will start the motor and pump of the air compressor. Then, if the pressure in the tank rises above the cut-off level, the switch will trip and stop the compressor. This will prevent it from being over-pressurized. Power flow will continue to flow to the motor. Depending on your compressor model, you can change the cut-in and cut-out pressures as needed.
energy source
The power supply of the air compressor is very important. Most air compressors run on 12 VDC, which is ideal for automotive use. Alternatively, you can buy a switching power supply for around $20. No matter which power supply you choose, you must ensure that it can support the maximum current of the compressor. You can find power supplies in all sizes, from quarter-horsepower to five-horsepower.
The voltage required for a three-phase air compressor will vary. Three-phase air compressors require three separate power cords and a three-phase electrical service panel. This is because a standard 120/240-volt electrical service panel is not sufficient to power a three-phase compressor. Additionally, three-phase compressors require three separate isolated wires for the engine and motor circuits. Three-phase compressors do not require a neutral wire.


editor by Cx 2023-05-09